Природа антигенной специфичности белков

Для выяснения природы антигенности белков и ее специфичности большое значение имели модельные опыты с искусственными аминокислотами и продуктами расщепления белка. Как оказалось, гомополимеры различных аминокислот антигенными свойствами не обладают. Однако если гомополимеры ароматических аминокислот присоединить к желатину, то антигенные свойства последнего значительно усиливаются, в то время как от присоединения, например, полиглицина или полиаланина антигенность желатина не возрастает. Это обстоятельство указывает на важную роль ароматического кольца для проявления антигенности.

Антигенные свойства у искусственно получаемых полиаминокислот возникают только на уровне сополимеров, т. е. когда появляется возможность определенных сочетаний аминокислот в таких структурах. Последовательность расположения аминокислот в каждой природной полипептидной цепи уникальна и генетически детерминирована. Поэтому возможность появления необычных для данного организма сочетаний аминокислот в составе полиаминокислот возникает лишь в том случае, если для их синтеза берутся разные аминокислоты. При этом опять-таки антигенность и специфичность полиаминокислот в значительной степени определяются остатками ароматических аминокислот – тирозина, фенилаланина, триптофана, содержащих в себе жесткое кольцо. По мнению Ф. Гауровитца, жесткость структуры детерминантных групп является обязательным условием антигенности молекулы. Детерминантная группа должна находиться на поверхности молекулы и быть доступной для систем иммунного ответа. Неспособность жирных кислот служить антигенными детерминантами Ф. Гауровитц объясняет тем, что их молекулы содержат длинные цепи парафиновых углеводородов, лишенных жесткой структуры, в связи с чем взаимное расположение химических групп, образующих молекулу жирной кислоты, в пространстве постоянно меняется.

Детерминантные группы нативных белков возникают из различных аминокислотных остатков, представляющих поверхностно расположенные группы определенной конформации. Важную роль в их образовании, очевидно, играют указанные выше аминокислоты. Вместе с тем и общая конформация белковой молекулы, т. е. ее вторичная и третичная структура, также определяет иммунологическую специфичность. Денатурирование белка меняет его антигенную специфичность. В свете этого становится понятным, почему присоединение различных химических группировок к белку приводит к изменению его антигенной специфичности. Гаптен, присоединенный к молекуле белка, изменяет ее конформацию и придает ей новую специфичность. У белка РНКазы, аминокислотная последовательность которой известна, детерминантные группы образованы аминокислотными остатками 39 – 52 и 105 – 124. Окисление или восстановление РНКазы приводит к изменению ее антигенной специфичности. Все три формы молекулы РНКазы – нативная, восстановленная и окисленная – обладают антигенной специфичностью и индуцируют образование различных по специфичности антител.

Таким образом, антигенность белков является функцией их чужеродности, а ее специфичность зависит от аминокислотной последовательности, которая определяет все свойства белка; от вторичной, третичной и четвертичной структуры, т. е. от общей конформации белковой молекулы; от поверхностно расположенных детерминантных групп и концевых аминокислотных остатков. Количество детерминантных групп в белковой молекуле возрастает пропорционально ее молекулярной массе. Например, в молекуле дифтерийного токсина (м. м. 61 кД) обнаружено около 8, тиреоглобулина (м. м. 650 кД) – 40, а гемоцианина (м. м. 6,5 МД) – более 230 детерминантных групп.

Похожие книги из библиотеки