· Заболевания · Лекарства · Народная медицина · Общие знания · Растения и травы · Медицинский словарь · Витамины · Справочник лекарственных средств ·

Мои закладки ( 0 )
Навигация

Основной справочник:


Заболевания

Общие знания

Народная медицина

Лекарства

Растения и травы

Мед. словарь

Витамины
Поликлиника восстановительного лечения № 2 - Москва Автор: Наталия
Дата: 05.12.2016 03:43
Текст отзыва:
Это не дикость, это - каменный век. Звоню целый день, чтобы переписать талон, не могу дозвониться. Получается, что я с температурой должна приехать с другого края Москвы (м.
читать все отзывы

Поиск по сайту:

  Яндекс.Поиск:

Книга: Энциклопедия Амосова. Алгоритм здоровья

Навигация: Начало     Оглавление     Поиск по книге     Другие книги   - 0

<< Назад    ← + Ctrl + →     Вперед >>

Наука о механизмах болезней и здоровья

Зачем говорить о болезнях? Но если бы не было болезней, кто бы вообще думал о здоровье? Поэтому приходится идти от противного: показывать, отчего болезни, чтобы наметить пути, как от них спастись. Нет, не лекарствами – активностью.

Понятия болезни и здоровья тесно связаны друг с другом. Казалось бы, они противоположны: крепкое здоровье – мало болезней, и наоборот. Однако все гораздо сложнее. Измерить здоровье и болезнь трудно, границу между ними провести практически невозможно.

Во-первых, болезнь с субъективной и объективной точек зрения не одно и то же. Во-вторых, можно трактовать болезнь в понятиях биохимии, физиологии, психологии, социологии. Все трактовки важны.

Начнем с психологии, с субъективного. Болезнь – это понижение уровня «приятного», УДК, связанное с тягостными физическими ощущениями или со страхом перед болями и смертью. Ощущения здорового сильного тела («мышечная радость», как говорил И.Павлов) у всегда здорового человека редки. Он давно адаптировался и просто не замечает тела. Здоровье само по себе вспоминается как счастье, только когда его уже нет.

Но существует и адаптация к неприятным чувствам, особенно если человек занят увлекательным делом. И наоборот, у мнительного субъекта может быть масса тягостных ощущений, которые принимают форму болезней. Поэтому психологические, субъективные критерии болезни ненадежны. Интенсивность жалоб не соответствует тяжести заболевания, это знают все врачи. Особенно теперь, когда болезни просто культивируются из-за обилия медиков и их неправильной установки считать всех людей потенциально больными.

Ощущения с тела направляются в кору мозга. Если возбудимость ее клеток повышена и они натренированы постоянным вниманием, то и нормальные импульсы, идущие с тела, воспринимаются как чрезмерные.

Сколько видишь людей, ушедших в болезнь!

Они носят ее как драгоценность, как оправдание всех своих неудач в жизни, как основание требовать у окружающих жалости и снисхождения. Очень неприятные типы! Врачу нельзя пренебрегать жалобами пациента, но не следует только по ним строить гипотезу о болезни. Однако не следует и забывать, что в конечном итоге врачи должны освободить человека именно от психологии болезни. Если нельзя избавить его от телесных страданий, врач обязан пытаться лечить их душевные последствия.

Вопросы болезней и здоровья приходится разбирать на разных уровнях: биохимии в клетках, физиологии в органах и целом организме.

Вот простенькая схема:

Начнем с клеток, с молекулярного уровня. На молекулярную биологию с надеждой смотрит вся медицина.

Еще совсем недавно, лет 50 назад, клетку представляли очень примитивно: ядро, протоплазма, оболочка. Теперь не так: клетка – это сложнейшая организация с полужестким скелетом из структурных белков, с множеством «каналов», по которым циркулируют токи жидкостей, содержащие различные простые и сложные молекулы. По ним осуществляются как вещественно-энергетические, так и информационные связи. Оболочка – это совсем не пассивная полунепроницаемая мембрана, а сложная структура с управляемыми «из центра» порами, избирательно пропускающими и даже активно захватывающими вещества извне.

Рассмотрим до предела упрощенную схему клетки (рис. 1).

Вверху изображены «органы управления»– ДНК, состоящая из генов, и рибосомы; ниже – «рабочие элементы», тоже условно поделенные на «специфические» и «обеспечивающие» структуры, которые выполняют соответствующие функции. Толстыми стрелками с надписями обозначены внешние «входы» и «выходы», тонкими – прямые и обратные связи между элементами.

Деятельность клетки сводится к многочисленным химическим реакциям, каждая из которых протекает под действием своего белка-фермента. Белки синтезируются, «печатаются» в рибосомах по матрицам-образцам РНК, которые получаются путем копирования одного гена с ДНК. Говорят: один ген – один белок. Таким образом, в генах содержится набор «моделей» для всех видов белков-ферментов клетки, а кроме того, масса специальных генов – «инструкций», призванных управлять, то есть включать и останавливать синтез тех или иных белков в зависимости от деятельности клетки в данный период. Например, для деления клетки нужны одни белки, для захвата пищи или переваривания ее – другие. «Неработающие» гены заблокированы. Они включаются в действие по сигналам, идущим от «рабочих» элементов (смотри стрелку «запрос на синтез»), а также от регулирующих систем организма, действующих через специфические гормоны.

В каждой клетке организма есть полный набор генов для всех видов его клеток, который сформировался еще в яйцеклетке при ее оплодотворении. В нем закодированы все белки-ферменты и все «инструкции»: как развиваться плоду, как вырасти взрослому, как должен действовать каждый вид клеток в процессе жизни человека. С развитием генетики дело с генами усложнилось: оказалось, что кроме генов «нужных» – для белков-ферментов, белков структурных, генов-регуляторов – в геноме содержится масса генов неизвестного назначения. По крайней мере – пока неизвестных. Таких насчитывают 50–80 %! Впечатление, что геном «засорен». Источниками «лишних» генов считают вирусы. Возможно, что часть из них служит резервом, который включается при больших нагрузках. Возможно, что за их счет осуществляются процессы приспособления и механизмы эволюции.

«Главная» деятельность клетки, служащая нуждам целого организма, осуществляется ее «специфическими» рабочими элементами. Объем, или количество, функции, например, сила сокращения мышечного волокна, определяется тремя факторами: интенсивностью внешнего раздражителя, массой «наработанных» ранее белков и наличием энергии, поставляемой «обеспечивающими» структурами. Для всех них на схеме показаны стрелки и надписи. «Обеспечивающие» элементы работают под воздействием «специфических» стимулов, производят по их запросам энергию в виде активных фосфорсодержащих молекул АТФ из глюкозы, аминокислот и жирных кислот, получаемых из крови.

Биохимики установили интересный факт: все живые белки закономерно распадаются на простые молекулы с постоянной скоростью. Величина ее определяется как «период полураспада». Для белков сердечной мышцы он равен примерно 30 дням. Это значит, что из 200 граммов белка через 30 дней останется только 100, еще через 30 дней 100: 2 = 50 и так далее, если за это время не синтезируются новые молекулы. Есть долгоживущие белки с периодом полураспада в 100 и более дней. Из них составлены стойкие структуры соединительной ткани – связки, хрящи, даже кость.

Новый белок «нарабатывается» в рибосомах по «моделям», снятым с гена в ответ на «запросы» от «рабочих элементов» при регулирующем воздействии гормонов. Чем напряженнее работает каждая молекула белка-фермента и чем больше этих молекул, то есть чем больше масса белка в «рабочем элементе», тем выше «запрос», тем больше синтезируется новых молекул белка. Так осуществляется баланс белка: одни молекулы распадаются в количествах тем больших, чем больше масса, а на их место синтезируются другие – в количествах, зависящих от интенсивности функции и от уже имеющейся массы. В то же время предел максимальной функции прямо определяется количеством белка.

Важно уяснить два типа процессов, протекающих в клетке, а соответственно и в организме, состоящем из многих клеток.

Первый процесс – тренировка . Если внешний раздражитель сильный, он заставляет функционировать все молекулы «рабочих» элементов с максимальным напряжением, от них идет максимальный «запрос на синтез» в ДНК-рибосомы, и они так же максимально синтезируют новый белок. «Старый» белок при этом продолжает распадаться с постоянной скоростью. В результате при большой нагрузке синтез обгоняет распад, и общая масса белка возрастает. Соответственно возрастает и мощность функции. Самый простой пример – тренировка спортсмена: чем больше нагрузка, тем больше мышечная масса и соответственно увеличивается поднимаемый тяжелоатлетом вес.

Второй процесс – детренированность . Предположим, что внешний раздражитель резко ослабляется, соответственно падает функция и уменьшается «запрос на синтез» новых молекул. В то же время наработанная ранее при большой функции масса белка продолжает распадаться с прежней скоростью, пропорционально массе на данный момент. В результате распад обгоняет синтез, суммарная масса белка уменьшается (атрофия), и соответственно уменьшается сила сокращения мышцы, возможность функции. Спортсмен бросил тренироваться, мышцы у него «растаяли», и он уже не может поднять даже половину того веса, который поднимал ранее.

Эти механизмы тренировки и детренированности белковых рабочих структур универсальны для всех клеток: мышечных, нервных или железистых – и для всех их функций. В частности, именно детренированность определяет развитие многих болезней, когда орган не в состоянии справиться с возросшей нагрузкой. Конечно, в разных органах различна масса функционального белка, поскольку различно потребление энергии. Поэтому уменьшение объема детренированного нейрона коры мозга несравнимо с атрофией бицепсов неработающего спортсмена.

Клетка живет по своим программам, заданным в ее генах. Она очень напоминает современный большой завод, управляемый хорошим компьютером с гибкими программами, обеспечивающими выполнение плана при всех трудностях. Если условия среды становятся для клетки неблагоприятными, то функции ее постепенно ослабляются, и наконец замирает сама жизнь.

На схеме (рис. 2) показаны характеристики функциональной структуры клетки при разных уровнях тренированности. Кривые отражают изменение «специфической» («главной» для целого организма) функции клетки в зависимости от силы внешнего раздражителя.

Над верхней кривой для самой тренированной клетки обозначены три режима: нормальный, форсированный и патологический. Что это такое? Названия говорят сами за себя. Нормальный режим обеспечивает среднюю интенсивность деятельности клетки, он устойчив и не ограничен во времени. Все химические реакции хорошо сбалансированы и не напряжены. На кривых мы видим линейную зависимость между силой раздражителя и возрастанием функций.

Форсированный режим временно обеспечивает повышенную функцию ценой снижения КПД и расходования запасов энергии. В сложном организме он вызывается действием особых веществ – активаторов, чаще всего гормонов. Деятельность его ограничена резервами энергии.

Патологический режим – это уже болезнь, и об этом особый разговор.

В чем выражается здоровье клетки? Это выполнение программ жизни: питание, рост, специфические функции, размножение. «Уровень здоровья» – это интенсивность проявления жизни в нормальных условиях среды, которая определяется тренированностью структур клетки.

Есть и другое определение: «Количество здоровья – это пределы изменений внешних условий, в которых еще продолжается жизнь».

«Количество здоровья» можно выразить в понятии «резервные мощности». Оно хотя и не биологического происхождения, но всем понятно: например, при движении по ровной дороге с нормальной скоростью от мотора автомобиля требуется 15 лошадиных сил, а максимальная его мощность 75 сил. Следовательно, есть пятикратный резерв мощности, который можно использовать для движения в гору или по плохой дороге. То же самое в клетке или органе. Нижняя точка на оси ординат – это величина функции, которую организм в состоянии покоя требует от клетки. Для детренированной клетки – это почти предел нормального режима, чтобы получать больше, нужна форсировка. Для среднетренированной клетки есть трехкратный резерв, а при высокой тренированности – шестикратный. На оси абсцисс треугольником отмечена точка. Для детренированной клетки – это предельная величина силы раздражителя, при усилении раздражений наступает патологический режим. При высокой тренированности раздражитель такой силы является нормальным.

Тренировка наиболее эффективна, когда величина функции приближается к границе форсированного режима. Эта точка отмечена на средней кривой.

Схема показывает, какое значение имеет тренировка для повышения «резервных мощностей». Сильный внешний раздражитель для детренированной клетки (органа или целого организма – все равно) вводит ее в патологический режим, то есть уже в болезнь, а для тренированной – это нормальная интенсивная работа.

Болезнь клетки в сложном организме – понятие непростое. Может ли «болеть» завод? Очевидно, да. Когда при нормальном снабжении и хороших рабочих он недодает продукцию или выпускает брак, значит, есть тому причины.

По идее клетка не должна «болеть», пока она нормально снабжается энергетическими и строительными материалами, пока периодически получает извне раздражители, дающие ей хорошую тренировку и пока ее «органы управления», то есть ДНК, в порядке. В самом деле: все структуры клетки обновляются, новые «детали» делаются по программам, заложенным в ДНК, в генах.

Даже если было плохо и клетка «заболела», то создай ей нормальные условия, и спустя некоторое время она обновит свои структуры и выздоровеет. Если только гены в порядке. Специалисты по молекулярной генетике говорят, что гены повреждаются редко. Подумайте, как это хорошо!

И тем не менее болезней полно, и все они первично проявляются в клетках.

Какую клетку сложного организма мы считаем больной?

Если она не выдает достаточной функции в ответ на «нормальное» раздражение, поступающее от системы организма, не выполняет свои программы деления, ее химия нарушена, и она выдает вовне продукты неполного обмена, вредные для других клеток. В общем, с позиций целого организма клетка больна, если она не справляется с требуемыми от нее функциями – осуществлять движение, выделять гормоны, продуцировать нервные импульсы. Перечислю возможные причины патологии клетки .

Детренированность . Если клетка периодически не получала больших нагрузок, она детренируется и на нормальный раздражитель дает пониженную функцию. Если раздражитель превышает предел достигнутой тренированности, клетка вступает в патологический режим, при котором химические реакции идут не до конца, и в ней накапливаются их продукты. Условно их можно назвать «помехами».

Плохое «снабжение». В крови недостаточно энергетических или строительных материалов: молекул глюкозы, жирных кислот, аминокислот, витаминов, микроэлементов, кислорода. Иногда это бывает, когда между кровью и клеткой возникает барьер из межклеточных структур – продуктов соединительной ткани или нарушается циркуляция крови по капиллярам (так называемая микроциркуляция).

Встречается и нарушенное гормональное регулирование генов со стороны эндокринной системы, и «отравление» клеток микробными токсинами или другими ядовитыми веществами, которые тормозят действие ферментов. Аналогично могут действовать нормальные продукты обмена, если они не удаляются из-за нарушения кровообращения («шлаки»). Наконец, возможны прямые повреждения генов из-за радиации, отравлений, внедрения новых участков ДНК, привнесенных вирусами или в результате мутаций. Это самая тяжелая патология, так как нарушаются «чертежи», по которым изготовляются ферменты. Правда, клетка имеет возможность сама «ремонтировать» двойную спираль ДНК, если поражена одна ее нить, но только при делении. Но не все клетки делятся. Например, нейроны коры мозга рассчитаны на «всю оставшуюся жизнь»: когда они повреждаются, то заменяются рубцом из соединительной ткани.

Клетки могут «болеть» в результате любой из перечисленных причин, и для разных болезней человека разные причины становятся важнейшими.

Чтобы перейти к уровню органов и их систем, необходимо несколько пояснений.

Очень трудно представить себе картину эволюции как развития все более сложных организмов из простых. Несомненно, участвовали три компонента, показанные на схеме:

В процессе эволюции сначала изменение среды меняло «рабочие» функции «тела» при неизменных генах. При этом нужно учесть гибкость программ управления со стороны генов, обеспечивающую приспособление к среде, когда в некоторых пределах ее изменений удается осуществить рост и размножение. Можно говорить о «напряжении приспособительных механизмов», когда жизнь идет на границе возможностей приспособления.

В генах закономерно происходят мутации. Или в них попадают новые гены от вирусов и микробов: геном изменяется. Чем энергичнее размножение, тем больше возможностей для проявления изменений, которые приводят программы управления организмом от генов в большее соответствие с требованиями среды. Эффективность изменчивости отрабатывается в ходе естественного отбора. Это обычная схема эволюции. По-ученому это звучит так: организация управления клетки меняется в ходе самоорганизации генома.

В самом начале эволюции меняющиеся физико-химические условия среды могли привести к тому, что поделившиеся клетки первых одноклеточных не разошлись, как им полагалось изначально, а остались связанными. Так возникли «колонии». Это механическое изменение привело к изменению тел связанных друг с другом клеток – к асимметрии строения. В дальнейшем это закрепилось в генах, появилась новая строка «инструкции», меняющая структуру клеток.

Дальше – больше. Образовались колонии с замкнутой внутренней средой, через которую клетки могли влиять друг на друга. Некоторые клетки потеряли связь с внешней средой и стали целиком зависимы от внутренней среды. Одновременно шла так называемая дифференцировка, специализация клеток, разделение функций между ними.



<< Назад    ← + Ctrl + →     Вперед >>


Похожие страницы

Запостить в ЖЖ Отправить ссылку в Мой.Мир Поделиться ссылкой на Я.ру Добавить в Li.Ru Добавить в Twitter Добавить в Blogger Послать на Myspace Добавить в Facebook

Copyright © "Медицинский справочник" (Alexander D. Belyaev) 2008-2017.
Создание и продвижение сайта, размещение рекламы

Обновление статических данных: 22:43:20, 21.01.17
Время генерации: 4.698 сек. Запросов к БД: 4, к кэшу: 4