На стекле

Тониус Филипс ван Левенгук, более известный как Антони ван Левенгук, определенно получил бы несколько Нобелевских премий, живи он в наше время. Но в конце XVII века этой награды не было, поэтому Левенгуку приходится довольствоваться всемирным признанием как конструктора микроскопов и славой основателя научной микроскопии.

Добившись в своих приборах 275-кратного увеличения, а по некоторым данным, и 500-кратного[54], он сделал множество открытий. В том числе первым описал эритроциты.

Современные последователи Левенгука довели его детище до совершенства. Оптические микроскопы способны давать увеличение до нескольких тысяч раз. И они позволили решить проблему, с которой в XVII веке справиться было невозможно: исследователям удалось рассмотреть прозрачные биологические объекты, в том числе клетки нашего организма.

Другой нидерландец, о котором мы уже говорили в первой главе, физик Фриц Цернике, в 1930-х годах заметил, что ускорение прохождения света по прямой делает изображение изучаемой модели более детальным, выделяя отдельные элементы на светлом фоне. Для создания интерференции в образце Цернике разработал систему колец, которые располагались как в объективе, так и в конденсаторе микроскопа.

Если правильно настроить (юстировать) микроскоп, то волны, которые идут от источника света, будут попадать в глаз с определенным смещением по фазе. И это позволяет значительно улучшить изображение изучаемого объекта.

Метод получил название фазово-контрастной микроскопии и оказался настолько прогрессивным и перспективным для науки, что в 1953 году Цернике была присуждена Нобелевская премия по физике.

Почему это открытие оценили так высоко? Дело в том, что раньше для изучения под микроскопом приходилось обрабатывать ткани и микроорганизмы различными реактивами – фиксаторами и красителями. Живые клетки при таком раскладе посмотреть не получалось: химикаты просто убивали их. Изобретение Цернике положило начало новому направлению в науке – прижизненному микроскопированию.

В XXI веке биологические и медицинские микроскопы стали цифровыми, способными работать в разных режимах – как в фазовом контрасте, так и в темном поле (изображение формируется светом, дифрагированным на объекте, и в результате тот выглядит очень светлым на темном фоне), а также в поляризованном свете, который нередко позволяет выявлять структуру объектов, лежащую за пределами обычного оптического разрешения.

Казалось бы, медикам нужно радоваться: в их руки попал мощнейший инструмент изучения тайн и загадок человеческого организма. Но этот высокотехнологичный метод заинтересовал шарлатанов и мошенников от медицины, которые посчитали фазово-контрастное и темнопольное микроскопирование очень удачным способом выуживания энных сумм денег у доверчивых граждан.

Похожие книги из библиотеки