— AD —

Структурно-функциональный и системный подходы к изучению организма

Научная физиология родилась в один день с анатомией — это произошло в середине XVII в., когда великий английский врач Уильям Гарвей получил разрешение церкви и короля и произвел первое после тысячелетнего перерыва вскрытие трупа приговоренного к смерти преступника с целью научного изучения внутреннего строения тела человека. Разумеется, еще древнеегипетские жрецы, бальзамируя тела своих фараонов, прекрасно знали устройство человеческого тела изнутри — но это знание не было научным, оно было эмпирическим, и к тому же — тайным: разглашение любых сведений об этом считалось святотатством и каралось смертью. Великий Аристотель, учитель и наставник Александра Македонского, живший за 3 столетия до нашей эры, очень смутно представлял себе, как устроен организм и как он работает, хотя был энциклопедически образован и знал, кажется, все, что к тому времени накопила европейская цивилизация. Более осведомленными были древнеримские врачи — ученики и последователи Галена (II век н. э.), которые заложили начала описательной анатомии. Огромную славу снискали себе средневековые арабские врачи, но даже величайший из них — Али Абу ибн Сина (в европейской транскрипции — Авиценна, XI в.) — лечил скорее человеческий дух, нежели тело. И вот У. Гарвей при стечении огромного количества народа проводит первое в истории европейской науки исследование устройства тела человека. Но Гарвея более всего интересовало, КАК РАБОТАЕТ организм. С древнейших времен люди знали, что в груди каждого из нас бьется сердце. Врачи во все времена измеряли пульс и по его динамике оценивали состояние здоровья и перспективы борьбы с разнообразными болезнями. До сих пор одним из важнейших приемов диагностики в знаменитой и таинственной тибетской медицине служит длительное непрерывное наблюдение за пульсом больного: врач сидит у его постели и держит руку на пульсе часами, а потом называет диагноз и предписывает лечение. Всем было хорошо известно: остановилось сердце — прекратилась жизнь. Однако традиционная в тот период Галеновская школа не связывала движение крови по сосудам с деятельностью сердца.

Но перед глазами Гарвея — сердце с трубочками-сосудами, наполненными кровью. И Гарвей понимает: сердце — всего лишь мышечный мешок, выполняющий роль насоса, который качает кровь по всему телу, потому что по всему телу разбегаются сосуды, которые становятся все более многочисленными и все более тонкими по мере удаления от насоса. По таким же сосудам кровь возвращается к сердцу, совершая полный оборот и непрерывно притекая ко всем органам, к каждой клеточке, неся с собой питательные вещества. Еще ничего не известно о роли кислорода, не открыт гемоглобин, никак не умеют врачи различать белки, жиры и углеводы — вообще знания химии и физики еще крайне примитивны. Но уже начали развиваться разнообразные технологии, инженерная мысль человечества изобрела множество приспособлений, облегчающих производство или создающих совершенно новые, небывалые раньше технические возможности. Современникам Гарвея становится ясно: в организме работают определенные механизмы, структурную основу которых составляют отдельные органы, причем каждый орган предназначен для выполнения той или иной конкретной функции. Сердце — это насос, качающий кровь по «жилам», точно так же, как те насосы, которые подают воду из равнинных озер в усадьбу на пригорке и питают радующие глаз фонтаны. Легкие — меха, через которые прокачивается воздух, как это делают подмастерья в кузнице, чтобы сильнее раскалить железо и его было легче ковать. Мышцы — канаты, прикрепленные к костям, и их напряжение заставляет эти кости перемещаться, что и обеспечивает движение всего тела, — точно так же, как строители с помощью талей поднимают огромные камни на верхние этажи строящегося храма.

Человеку свойственно всегда сопоставлять новые открытые им явления с уже известными, вошедшими в обиход. Человек всегда строит аналогии, для того чтобы легче понять, объяснить самому себе суть происходящего. Высокий уровень развития механики в эпоху, когда Гарвей проводил свои исследования, неминуемо привел к механической интерпретации многочисленных открытий, сделанных врачами — последователями Гарвея. Так родилась структурно-функциональная физиология с ее лозунгом: один орган — одна функция.

Однако по мере накопления знаний — а это в значительной мере зависело от развития физических и химических наук, поскольку именно они поставляют основные способы для проведения научных исследований в физиологии, — стало ясно, что многие органы выполняют не одну, а несколько функций. Скажем, легкие — не только обеспечивают обмен газами между кровью и окружающей средой, но также участвуют в регуляции температуры тела. Кожа, выполняя в первую очередь функцию защиты, одновременно является и органом терморегуляции и органом выделения. Мышцы способны не только приводить в действие скелетные рычаги, но и за счет своих сокращений согревать притекающую к ним кровь, поддерживая температурный гомеостаз. Примеры такого рода можно приводить без конца. Полифункциональность органов и физиологических систем стала особенно явственной в конце XIX — начале XX в. Любопытно, что в это же время в технике появилось множество разнообразных «универсальных» машин и инструментов, обладающих широким спектром возможностей — порой, в ущерб простоте и надежности. Это — иллюстрация того факта, что техническая мысль человечества и уровень научного понимания организации процессов в живой природе развиваются в теснейшем взаимодействии между собой.

К середине 30-х годов XX в. стало ясно, что даже концепция полифункциональности органов и систем уже не способна объяснить согласованность функций организма в процессе адаптации к изменяющимся условиям или в динамике возрастного развития. Стало складываться новое понимание смысла процессов, происходящих в живом организме, из которого постепенно сформировался системный подход к исследованию физиологических процессов. У истоков этого направления физиологической мысли стояли выдающиеся российские ученые — А.А. Ухтомский, Н.А. Бернштейн и П.К. Анохин.

Наиболее принципиальное различие структурно-функционального и системного подходов состоит в понимании того, что является физиологической функцией. Для структурно-функционального подхода характерно понимание физиологической функции как некоего процесса, осуществляемого определенным (конкретным) набором органов и тканей, меняющим по ходу функционирования свою активность в соответствии с влиянием управляющих структур. В такой интерпретации физиологические механизмы — это те физические и химические процессы, которые лежат в основе физиологической функции и обеспечивают надежность ее выполнения. Физиологический процесс — вот тот объект, который находится в центре внимания структурно-функционального подхода.

Системный подход базируется на представлении о целесообразности, т. е. под функцией в рамках системного подхода понимают процесс достижения некой цели, результата. На различных этапах этого процесса потребность в вовлечении тех или иных структур может весьма существенно меняться, поэтому констелляция (состав и характер взаимодействия элементов) функциональной системы очень подвижна и соответствует той частной задаче, которая решается в текущий момент. Наличие цели предполагает, что существует некоторая модель состояния системы до и после достижения этой цели, программа действия, а также существует механизм обратной связи, позволяющий системе контролировать свое текущее состояние (промежуточный результат) по сравнению с моделируемым и на этом основании вносить коррективы в программу действия ради достижения конечного результата.

С позиций структурно-функционального подхода окружающая среда выступает как источник стимулов для тех или иных физиологических реакций. Возник стимул — в ответ возникла реакция, которая либо угасает по мере привыкания к стимулу, либо прекращается тогда, когда перестает действовать стимул. В этом смысле структурно-функциональный подход рассматривает организм как закрытую систему, имеющую лишь определенные каналы обмена информацией с окружающей средой.

Системный подход рассматривает организм как открытую систему, целевая функция которой может быть помещена как внутри, так и вне ее. В соответствии с этим взглядом организм реагирует на воздействия внешнего мира как единое целое, перестраивая стратегию и тактику этого реагирования в зависимости от достигаемых результатов каждый раз таким образом, чтобы либо быстрее, либо надежнее достичь модельных целевых результатов. С этой точки зрения реакция на внешний раздражитель угасает тогда, когда сформированная под его воздействием целевая функция оказывается реализованной. Стимул может продолжать действовать либо, напротив, — может прекратить свое действие еще задолго до завершения функциональных перестроек, но раз начавшись, эти перестройки должны пройти весь запрограммированный путь, и реакция закончится только тогда, когда механизмы обратной связи принесут информацию о полной сбалансированности организма со средой на новом уровне функциональной активности. Простой и наглядной иллюстрацией этого положения может служить реакция на любую физическую нагрузку: для ее выполнения активируются мышечные сокращения, что вызывает необходимость соответствующей активации кровообращения и дыхания, и даже когда нагрузка уже завершена — физиологические функции все еще довольно длительное время сохраняют свою повышенную активность, поскольку они обеспечивают выравнивание метаболических состояний и нормализацию гомеостазируемых параметров. Функциональная система, обеспечивающая выполнение физического упражнения, включает в себя не только мышцы и нервные структуры, отдающие мышцам приказ сокращаться, но также и кровеносную систему, дыхательную систему, эндокринные железы и множество других тканей и органов, вовлеченных в этот процесс, связанный с серьезными изменениями внутренней среды организма.

Структурно-функциональный взгляд на сущность физиологических процессов отражал детерминистский, механистически-материалистический подход, который был характерен для всех естественных наук XIX и начала XX в. Вершиной его развития, вероятно, можно считать теорию условных рефлексов И.П. Павлова, с помощью которых великий русский физиолог пытался познать механизмы деятельности мозга теми же приемами, которыми он с успехом исследовал механизмы желудочной секреции.

Системный подход стоит на стохастических, вероятностных позициях и не отвергает телеологических (целесообразностных) подходов, характерных для развития физики и других естественных наук второй половины XX в. Уже говорилось выше, что физиологи одновременно с математиками именно в рамках этого подхода пришли к формулированию наиболее общих кибернетических закономерностей, которым подчиняется все живое. Столь же важны для понимания физиологических процессов на современном уровне представления о термодинамике открытых систем, развитие которых связано с именами выдающихся физиков XX в. Ильи Пригожина, фон Берталанфи и др.

Похожие книги из библиотеки

Перестаньте кричать, заставлять и упрашивать, или Домашнее задание без слез и нервотрепки

Для многих родителей выполнение домашнего задания становится еще одним поводом для конфликта с детьми. Автор книги, педагог с сорокалетним стажем, раскроет важный секрет: домашнее задание можно выполнять с удовольствием! Практические советы и рекомендации помогут вам найти взаимопонимание со школьником, научить его слушать и вникать. Очень скоро ваш ребенок повысит уровень базовых знаний, станет более самостоятельным и ответственным и вам больше не придется заставлять его делать уроки!

Завтра начинается сегодня. Как воспользоваться достижениями anti-age медицины

Доктор Дэвид Агус, врач, который сумел максимально продлить жизнь Стиву Джобсу, автор двух бестселлеров о здоровой и долгой жизни, в своей третьей книге раскрыл секреты медицины настоящего, рассказал о ее будущем и объяснил, как до него дожить и сохранить здоровье. Уже через несколько лет, по исследованиям доктора Агуса, двигаясь теми же темпами, что сейчас, медицина позволит нам получить хорошую физическую форму и похудеть без диет, создаст каждому иммунную систему для борьбы с главной проблемой современного мира – раком, будет менять ДНК, снизит до минимума риск сердечного приступа, остановит старение и разработает препараты без побочных эффектов. Это все – картина будущего! Но ради его достижения начать оберегать свое здоровье и соблюдать правила, которые вы найдете в этой книге, нужно с самого первого дня, как вы начнете ее читать, то есть уже сегодня!

Питание по группам крови. Новые рецепты

В наше время лишний вес стал проблемой для многих. В борьбе с ним с переменным успехом были испробованы многие способы, одним из которых является питание по группам крови. В данном издании собрана подробная информация о режиме питания при разных группах крови, рекомендации и советы, которые помогут сочетать диету с привычным образом жизни. В книге имеется большое количество рецептов вкусных и полезных блюд, которые помогут худеть эффективно и с удовольствием.

Правила здоровой и долгой жизни

Можем ли мы продлить полноценную часть своей жизни и избежать заболеваний, которые обычно настигают ближе к 40 годам? Никто пока не ответил на этот вопрос лучше, чем признанный мировой лидер доктор Дэвид Агус. Для российских читателей достаточно сказать, что именно ему вручил свою жизнь Стивен Джобс. Но иногда бывает, что никакие деньги мира и медицинские достижения не могут победить далеко зашедшую болезнь. Эта книга – крик души врача, который понимает это как никто другой: ведь если бы люди знали пораньше, ведь это совсем не дорого и не сложно… Книга Дэвида Агуса сразу стала бестселлером в Америке, права на нее куплены в 20 странах, она уже издана в Германии, Франции, Англии, Испании, Португалии и других странах. Восторженные отзывы о ней дали выдающиеся люди планеты: Уолтер Айзексон, биограф Стива Джобса; Юрий Мильнер, основатель mail.ru; Александр Мясников, ведущий российский врач; Альберт Гор, вице-президент США; Ланс Армстронг, победитель гонки Тур де Франс. Очень хочется, чтобы россияне, прочитав эту книгу, тоже смогли получить простые инструкции, что нужно делать и чего избегать, чтобы жить долго в здравом рассудке и крепком теле. Будьте здоровы, живите долго и счастливо!