Глава третья

Гормоны стресса

Что такое стресс, знают все.

И в то же время – далеко не все.

Дело в том, что научное понятие стресса разительно отличается от бытового. В быту стрессом называется любая нервотрепка. Накричал начальник – стресс. Сын получил двойку – стресс. Пирог не поднялся в духовке – тоже стресс. Ну а про часовое стояние в пробке вообще говорить нечего, это такой стресс, что всем стрессам стресс.

На самом же деле стресс не имеет ничего общего с нервотрепкой. Стрессом называют состояние повышенного напряжения организма (в том числе и нервной системы), возникающее в ответ на воздействие различных неблагоприятных факторов, физических или психических.

Вы голодны? Значит, вы испытываете стресс.

Вы замерзли, да так, что у вас зуб на зуб не попадает? Это тоже стресс. А дрожь – попытка организма защититься от переохлаждения посредством усиления мышечной активности, при которой выделяется тепло. Мышцы «дрожат», то есть – двигаются, температура тела повышается.

Начальник проявляет по отношению к вам агрессию – кричит на вас, стучит кулаком по столу? Это еще одна разновидность стресса. В ответ на чужую агрессию вы, точнее – ваш организм готовится к схватке или к бегству. Учащается сердцебиение, в результате чего кровь начинает двигаться по сосудам более интенсивно. Также возрастает частота дыхательных движений – газообмен между кровью и воздухом становится интенсивнее, кровь быстрее очищается от углекислого газа и лучше насыщается кислородом. Периферические кровеносные сосуды сужаются, в результате происходит перераспределение кровотока в пользу мышц и жизненно важных органов (сердца, легких), которые работают с повышенной нагрузкой… И так далее.

А вот двойка, принесенная вашим ребенком из школы, в сугубо научном понимании стрессом не является, поскольку ваш организм не нуждается в мобилизации в ответ на воздействие этого фактора. Вам не нужно добывать пищу, согреваться или убегать… Да, конечно, определенные негативные эмоции от получения ребенком двойки вы испытаете, но все же это будет не стрессовая ситуация, а нервное напряжение.

Стресс – это ответная реакция. «На пустом месте», то есть – без причины, без какого-либо воздействующего фактора стресс возникнуть не может.

Стресс – это защитная реакция, поскольку смысл стресса в том, чтобы защититься от воздействия неблагоприятного фактора, в том, чтобы не пострадать и не погибнуть.

Стресс – это приспособительная реакция, поскольку он помогает организму приспособиться к условиям окружающей среды.

Эндокринолог Ганс Селье, создавший учение о стрессе, называл стресс «неспецифическим ответом организма на любое предъявленное ему требование». Неспецифическим, обратите внимание! Стрессовая реакция носит не узконаправленный, а общий характер.

В стрессе выделяют три стадии:

• стадию тревоги, в течение которой происходит мобилизация адаптационных возможностей организма;

• стадию сопротивляемости или адаптации, в течение которой организм сопротивляется неблагоприятному воздействию, устойчивость организма к воздействию фактора, вызвавшего стресс, возрастает;

• стадию истощения, начинающуюся после того, как адаптационные возможности организма будут исчерпаны (все резервы организма, к сожалению, ограниченны); эта стадия характеризуется снижением устойчивости организма к воздействию фактора, вызвавшего стресс.

Глава третья Гормоны стресса

— AD —

Стресс, вызванный положительными эмоциями, называется «эустрессом», а негативными – «дистрессом». Да, в отличие от бытового «стресса», научный стресс может быть и положительным. Половой акт – это пример эустресса.

С тем, что такое стресс, мы разобрались и теперь перейдем к нашему предмету – к гормонам стресса, выработка которых увеличивается при стрессовых состояниях. Гормонов стресса четыре – адреналин, норадреналин, кортизол и пролактин.

Адреналин (или эпинефрин) – это основной гормон, вырабатываемый мозговым веществом надпочечников. Адреналин – довольно простое с химической точки зрения вещество. Молекула его относительно невелика и состоит всего лишь из двадцати пяти атомов – девяти атомов углерода, тринадцати атомов водорода, трех атомов кислорода и одного атома азота. Брутто-формула (то есть химическая формула, отражающая только состав, но не структуру молекулы вещества) адреналина выглядит так: C9H13NO3, а структурная формула – так:

Глава третья Гормоны стресса

Обратите внимание на шестиугольное кольцо, к которому прикреплены две группы – ОН. Адреналин является производным вещества пирокатехина, имеющего вот такую формулу:

Глава третья Гормоны стресса

Молекула адреналина содержит аминогруппу – NH, поэтому адреналин (так же, как и норадреналин, и допамин, речь о которых пойдет ниже) относится к катехоламинам – производным пирокатехина с наличием аминогруппы в молекуле. Столь глубоко в химию мы могли бы и не вникать, но дело в том, что название «катехоламины» употребляется не только в научной, но и в популярной литературе. Так что надо понимать, что это такое.

Мал адреналин, но удал невероятно. Чего только он не умеет!

Усаживайтесь поудобнее и начинайте читать о том, что делает в нашем организме адреналин.

Но прежде, чем приступить к перечислению функций адреналина, нужно сказать, что в нашем организме существует не один тип адренорецепторов – рецепторов, способных связываться с адреналином и норадреналином, а целых пять! Адренорецепторы обозначаются греческими буквами «?» и «?», а также номерами.

?1-адренорецепторы находятся в мельчайших артериях, которые называются «артериолами». Стимуляция этих рецепторов (то есть – взаимодействие их с адреналином) приводит к сужению артериол, спазму их стенок.

?2-адренорецепторы, которые также находятся в артериолах, при взаимодействии с адреналином производят обратное действие – расширяют просвет артериол.

?1-адренорецепторы находятся, главным образом, в сердечной мышце. Их стимуляция приводит к увеличению частоты и силы сердечных сокращений. Также эти рецепторы находятся в почках.

?2-адренорецепторы находятся в мельчайших бронхах, которые называются «бронхиолами» (суффикс «-ола» имеет уменьшительное значение). Их стимуляция вызывает расширение бронхиол. Также эти рецепторы находятся в печени, где при стимуляции увеличивают распад гликогена и тем самым увеличивают поступление глюкозы в кровь. Гликоген – это углевод с огромной молекулой, состоящей из множества молекул глюкозы. Он представляет собой форму запаса глюкозы у животных. У растений для этой цели служит крахмал.

?3-адренорецепторы находятся в жировой ткани. Их стимуляция усиливает распад жиров, сопровождающийся выделением энергии.

Адренорецепторы присутствуют во всех органах, во всех клетках нашего организма! Не каждый гормон может похвастаться такой популярностью.

Возникает вопрос – зачем нужно столько адренорецепторов? К чему такие сложности?

А для того, чтобы малой ценой (при помощи одного вещества) решать сразу несколько задач. На самом деле это очень разумно. В хозяйстве это называется – рачительный подход. В организме все устроено логично и рационально. Даже такие взаимоисключающие действия, как, например, сужение и расширение кровеносных сосудов при воздействии адреналина на разные типы адренорецепторов, возникли не случайно.

А теперь – о функциях адреналина. По пунктам.

Функция первая – адреналин вызывает выраженное сужение сосудов органов брюшной полости, кожи и слизистых оболочек, а также в незначительной степени сужает сосуды скелетных мышц. Понятно, для чего это делается? Для перераспределения кровотока, для того, чтобы кровь шла туда, где она особенно нужна при стрессе – к мышцам, к сердцу, к легким, к головному мозгу. Незначительное сужение сосудов скелетных мышц можно не принимать во внимание, поскольку выражено оно слабо. Для простоты можно считать, что на эти сосуды адреналин не действует. Из-за массированного сужения кровеносных сосудов повышается артериальное давление. Гидравлика и ничего более – уменьшение объема замкнутой системы приводит к возрастанию давления в ней.

Вообще-то действие адреналина на организм гораздо сложнее, чем здесь рассказывается. Так, например, наряду с действиями, приводящими к повышению артериального давления, адреналин также способствует и его снижению – вспомните про ?1 и ?2-рецепторы, находящиеся в артериолах. Но мы рассматриваем только основное, доминирующее, самую суть, без чрезмерного углубления в дебри.

Функция вторая – адреналин расширяет сосуды головного мозга, чтобы мозг получал больше крови, больше питания.

Функция третья – адреналин усиливает сердечные сокращения и повышает их частоту, что также приводит к повышению артериального давления – если насос (а сердце, как бы его ни воспевали и каких свойств ему бы ни приписывали, есть не что иное, как четырехкамерный насос) начинает работать интенсивнее, то давление в системе возрастает. Кровь приносит органам кислород и питательные вещества, а взамен забирает все ненужное – конечные продукты обмена веществ (углекислый газ, мочевину, мочевую кислоту, воду). Чем интенсивнее ток крови, тем лучше снабжаются и лучше очищаются органы.

Функция четвертая – адреналин вызывает расслабление мускулатуры бронхов, кишечника и мочевого пузыря. Расслабление мускулатуры бронхов, как вы уже догадались, приводит к их расширению, что усиливает газообмен между кровью и воздухом. Расслабление мускулатуры кишечника замедляет пищеварение. Переваривание пищи – не самое главное занятие при стрессе. Его можно замедлить, можно отложить на будущее, послестрессовое время. Расслабление мускулатуры мочевого пузыря увеличивает его объем. Ощущение наполненного мочевого пузыря, иначе говоря – позыв к мочеиспусканию, это ощущение дискомфорта, неудобства, которого в стрессовой ситуации лучше избежать, чтобы не отвлекаться от основной задачи – защиты и спасения себя.

Функция пятая – адреналин вызывает сокращение радиальной (круговой) мышцы радужной оболочки, что приводит к расширению зрачка. В результате глаза получают больше света, то есть – улучшается зрение.

То, что на мышцы разных органов адреналин действует по-разному, обусловлено наличием в этих мышцах рецепторов разных типов. Так, например, в мышцах бронхов и кишечника находятся ?2-рецепторы, а в радиальной мышце радужной оболочки – ?1-рецепторы.

Функция шестая – адреналин принимает широкое участие в процессах обмена веществ. Он делает все возможное для того, чтобы в крови оказалось как можно больше глюкозы, и помогает клеткам организма захватывать и использовать ее. Попутно адреналин стимулирует распад жиров и тормозит их синтез. Распад жиров сопровождается выделением энергии, а синтез – поглощением. Таким образом адреналин старается дать организму как можно больше энергии, которая может быть использована (может понадобиться) в стрессовой ситуации. Любой стресс сопровождается повышенным расходом энергии.

Функция седьмая – при продолжительном воздействии в умеренных количествах адреналин вызывает увеличение сердечной и скелетных мышц, то есть способствует адаптации организма к повышенным физическим нагрузкам.

Функция восьмая – при продолжительном воздействии в высоких количествах адреналин вызывает усиленный распад белков, что приводит к уменьшению мышечной массы, снижению веса вплоть до истощения.

Казалось бы – зачем нужна такая функция? Какой от нее прок, кроме вреда? Что хорошего в истощении?

Разумеется, ничего хорошего в истощении быть не может. Но давайте взглянем на проблему с другой стороны. По какой причине адреналин будет присутствовать в организме в высоких концентрациях в течение длительного времени? Ясное дело – из-за повторяющихся стрессов. Как было сказано выше, любой стресс сопровождается повышенным расходом энергии. Если стрессы следуют один за другим, то истощаются запасы гликогена, сжигаются все жиры и настает черед белков, последнего, можно сказать – неприкосновенного, запаса энергии. Вот адреналин и способствует их распаду. А что прикажете делать, если больше энергию взять неоткуда?

Функция девятая – адреналин оказывает стимулирующее воздействие на центральную нервную систему – бодрит, активизирует, способствует психической мобилизации. Образно говоря, адреналин посылает головному мозгу сигнал: «Тревога! Будь начеку!»

Функция десятая – адреналин оказывает выраженное противоаллергическое и противовоспалительное действие. Он подавляет высвобождение веществ, участвующих в аллергических и воспалительных процессах, а также понижает чувствительность клеток к этим веществам.

Десять – это еще не предел. Читайте дальше!

Функция одиннадцатая – адреналин уменьшает кровенаполнение пещеристых тел полового члена, снижая тем самым эрекцию. Мужчины могут не удивляться – ну как же так? Зачем природа предусмотрела эту функцию? Природа, можно сказать, эту функцию не предусматривала. Дело в том, что этот эффект проявляется только при введении больших доз адреналина непосредственно в пещеристые тела и имеет значение только в медицине. При выбросе в кровь адреналин эрекцию не снижает, а даже немного увеличивает, поскольку из-за перераспределения кровотока к половому члену притекает больше крови.

Функция двенадцатая – адреналин оказывает стимулирующее действие на свертывающую систему крови, что в сочетании со спазмом артериол выражается в остановке или ослаблении кровотечений, то есть – в уменьшении кровопотери.

Функция тринадцатая (и последняя из важнейших функций, которые мы рассматриваем) – адреналин через гипоталамус стимулирует выработку адренокортикотропного гормона в гипофизе. Пугающее своей длиной название «адренокортикотропный» образовано из двух латинских слов и одного греческого: «адреналис» («надпочечный»), «кортекс» («кора») и «тропос» («направление»). Переводится оно как «направленный к коре надпочечников», то есть – к их корковому веществу. А для чего гипофиз будет направлять к корковому веществу надпочечников особый гормон? Конечно же, для стимуляции. Адренокортикотропный гормон стимулирует выработку в корковом веществе надпочечников таких гормонов, как кортизол, кортизон, кортикостерон, прогестерон, андрогены и эстрогены.

Кортизон и кортикостерон играют в нашем организме весьма незначительную роль. Настолько незначительную, что внимания не заслуживают. О прогестероне, андрогенах и эстрогенах (да, половые гормоны вырабатываются и в надпочечниках), мы еще поговорим в других главах. А сейчас нас интересует кортизол – еще один стрессовый гормон. Смотрите, как умно устроено – адреналин стимулирует выработку своего помощника в борьбе со стрессовым фактором, а кортизол, помимо своего основного действия, усиливает действие адреналина. Оцените – какая полезная взаимовыручка! Потрясающе!

К кортизолу мы вернемся немного позже. А пока что поговорим о применении адреналина в медицине.

Благодаря своей многофункциональности и относительной простоте получения (из надпочечников крупного рогатого скота) адреналин весьма широко используется в лечебных целях. Его применяют при острых аллергических реакциях (по-научному они называются аллергическими реакциями немедленного типа), для купирования приступов бронхиальной астмы, для «запуска» сердца при остановке, при снижении уровня содержания глюкозы в крови, при приапизме – длительной и болезненной эрекции, не связанной с половым возбуждением, а также при кровотечениях из поверхностных сосудов кожи и слизистых оболочек из-за вызываемого им спазма артериол.

А теперь подумайте – можно ли применять адреналин при повреждениях крупных кровеносных сосудов?

Конечно же нет, ни в коем случае нельзя, поскольку спазм артериол, вызываемый адреналином, приведет к повышению артериального давления, что, в свою очередь, увеличит потерю крови – она будет интенсивнее вытекать из поврежденного сосуда.

Адреналин оказывает антистрессовое действие весьма недолго – всего несколько минут. Дело в том, что практически с момента поступления адреналина в кровь запускается процесс его уничтожения при помощи особых ферментов. То же самое происходит и с норадреналином. Это делается для того, чтобы предотвратить истощение организма, ведь на пике напряжения невозможно существовать продолжительное время.

Норадреналин (C8H11NO3) с химической точки зрения считается предшественником адреналина, поскольку имеет более простое строение – не содержит так называемую метильную группу (-CH3) у атома азота. Вместо метильной группы атом азота связан с еще одним атомом водорода:

Глава третья Гормоны стресса

Из-за сходства в строении основные функции норадреналина совпадают с функциями адреналина, однако имеются и различия. Норадреналин преимущественно связывается с ?-рецепторами. Он оказывает более выраженное сосудосуживающее действие, чем адреналин, но гораздо слабее влияет на обмен веществ, на сердце, на бронхи, на кишечник и пр. Ввиду этого в медицине норадреналин в основном используется в тех случаях, когда требуется резко и значительно повысить артериальное давление. Если адреналин можно назвать «гормоном широкого спектра действия» или «специалистом широкого профиля», то норадреналин – специалист узкого профиля. По сути дела он способен только повышать артериальное давление, но зато делает это замечательно хорошо – гораздо быстрее и гораздо сильнее адреналина.

Вы спросите – зачем нам нужно повышать давление, ведь от этого только проблемы возникают? Но не надо путать патологическое, то есть болезненное, повышение артериального давления с физиологическим, нормальным. Вот простой пример – вы полежали некоторое время, а затем встали. Перевод тела из горизонтального положения в вертикальное должен сопровождаться повышением артериального давления, чтобы кровь продолжала притекать к головному мозгу в достаточном количестве, иначе может наступить обморок.

Вот вам цифры – если в положении лежа уровень содержания норадреналина в крови составляет от 0,41 до 4,43 нмоль/л[8] (в зависимости от возраста и прочих факторов), то в положении стоя – от 1,18 до 10 нмоль/л. При переводе тела в вертикальное положение содержание норадреналина в крови возрастает более чем в два раза.

Также норадреналин участвует в регуляции процесса бодрствования, но уже не как гормон, а как химическое вещество.

Адреналин часто называют «гормоном страха» по той причине, что его выброс происходит как при интенсивной физической нагрузке, так и при любом сильном волнении (в частности – при испуге). А норадреналин называют «гормоном ярости», поскольку считается, что в результате выброса норадреналина в кровь возникает реакция агрессии.

На самом же деле это разделение весьма условно и не отражает реального положения дел. И страх, и ярость (и оргазм, если хотите) представляют собой результат сложного, сочетанного, слаженного взаимодействия различных гормонов. Называть адреналин «гормоном страха», а норадреналин – «гормоном ярости» так же глупо, как утверждать, что передние колеса автомобиля служат для движения вперед, а задние – для движения назад. И назад, и вперед автомобиль едет на всех четырех колесах, точно так же, как в обеспечении стрессовой реакции организма принимают участие все стрессовые гормоны. Только так и никак иначе.

Большинству читателей этой книги явно знакомы такие термины, как «адреналиновая зависимость» и «адреналиновая наркомания». Адреналиновыми наркоманами называют разного рода экстремалов, любителей острых ощущений и риска. Считается, что эти люди испытывают эйфорию при повышении уровня содержания адреналина в крови и потому покоряют горные вершины, прыгают с парашютом, лазают по крышам и шпилям, летают на дельтапланах, участвуют в родео и т. п. Риск их не пугает, им нужен адреналин, как можно больше адреналина…

Так вот, давайте начнем с того, что нет никакой «адреналиновой зависимости», а следовательно, и «адреналиновой наркомании». Во всяком случае, официальная медицинская наука термина «адреналиновая зависимость» не использует и не признает. Да – представьте себе! Откуда же он взялся? «Адреналиновую зависимость» придумали психологи. Не как диагноз, а в качестве профессионального жаргонного условного «ярлыка» для пациентов, испытывавших непреодолимую жажду острых ярких ощущений, приносимых опасными, рискованными действиями.

Почему «адреналиновая зависимость» – ярлык условный и официальным диагнозом считаться не может? Да потому что никакой зависимости адреналин (и норадреналин тоже) вызывать не способен. Тяга к рискованно-опасному имеет психологическое происхождение (недаром же эту зависимость придумали психологи). Дело совсем не в адреналине, а в психологических проблемах конкретной личности, в мотивах, побуждающих человека рисковать снова и снова. Многим экстремалам (автор намеренно отказался от слов «подавляющему большинству», поскольку не имел под рукой соответствующей статистики), как бы ни парадоксально это звучало, не хватает уверенности в себе. Для того, чтобы обрести эту уверенность, они вынуждены совершать различные экстремальные поступки. Схема их поведения примерно такова. Неуверенность побуждает к действию (например – к прыжку с парашютом как преодолению боязни высоты), после экстремального действия наступает период спокойствия, то есть – период уверенности, по истечении некоторого времени неуверенность снова поднимает голову и побуждает совершить новое экстремальное действие… Адреналин здесь, можно сказать, совсем ни при чем. И вообще, если бы дело было в адреналине, то зависимые вводили бы его внутривенно и получали свою порцию радости. Это же проще, чем покорять Эверест, прыгать с парашютом или кататься на скейтборде по краю крыши небоскреба.

Статус медицинского диагноза «адреналиновой зависимости» придали авторы многочисленных статей об экстриме и экстремалах. Но, читая статьи в средствах массовой информации, надо понимать, что «газетная» медицина сильно отличается от официальной.

А сейчас…

Если вы подумали, что сейчас речь пойдет о кортизоле, то ошиблись. До кортизола мы доберемся чуть позже. А сейчас мы поговорим о дофамине, химическом предшественнике норадреналина.

Глава третья Гормоны стресса

От норадреналина дофамин отличается отсутствием одной гидроксильной группы – OH. Невелика разница, да весьма существенна.

Как гормон дофамин сильно уступает адреналину. По всем статьям. И по степени действия на адренорецепторы, и по количеству функций. Норадреналину дофамин тоже уступает.

Артериолы дофамин сужает, но не так сильно, как норадреналин.

Силу и частоту сердечных сокращений дофамин увеличивает, но не так сильно, как адреналин.

Дофамин расслабляет мускулатуру кишечника, но не так сильно, как адреналин.

Зато дофамин способен расширять почечные сосуды, увеличивая в них кровоток и фильтрацию, в результате которой образуется моча. Также дофамин увеличивает выведение ионов натрия с мочой. Эта функция обусловлена наличием в почках особых дофаминовых рецепторов.

Мы перечислили основные функции дофамина, как гормона. Немного, не так ли? Но дело в том, что свою славу дофамин получил не как гормон, а как нейромедиатор – биологически активное вещество, участвующее в передаче нервного импульса.

Что примечательно – тот дофамин, который выполняет роль гормона, вырабатывается надпочечниками, а также, в очень небольших количествах, почками. А тот дофамин, который выступает в роли нейромедиатора, вырабатывается нервными клетками головного мозга. Причина такого разделения заключается в том, что дофамин не способен (точнее – почти не способен) проникать через так называемый гематоэнцефалический барьер, разделяющий кровеносную и центральную нервную системы.

Гематоэнцефалический барьер образован клетками, выстилающими внутреннюю поверхность кровеносных сосудов. Если в других органах между этими клетками то и дело встречаются промежутки – отверстия и щели, через которые могут проникать различные вещества, то в сосудах, питающих головной мозг, клетки прилегают друг к другу плотно, без каких-либо промежутков. Транспорт веществ из сосудов головного мозга осуществляется не через отверстия и щели, а через клетки. Сначала вещество попадает из крови в клетку, а затем уже из нее переходит в мозг. Если сравнить этот процесс с переходом государственной границы, то можно сказать, что во всем организме этот переход осуществляется через дыры в ограде, а в головном мозге – только через пограничные пункты и никак иначе. Гематоэнцефалический барьер – это не причуда природы, а необходимый защитный механизм, препятствующий проникновению в такой архиважный орган, как головной мозг, микроорганизмов, токсинов и пр.

В качестве нейромедиатора дофамин вызывает чувство удовольствия или удовлетворения. Он в больших количествах вырабатывается в организме во время положительного, приятного опыта – приема вкусной пищи, секса, просмотра интересной картины, победы в игре и т. п. Выработку дофамина вызывает не только непосредственное переживание положительного опыта, но и мысли о нем – воспоминания или даже мечты. Так что мечтать и в самом деле не вредно. В качестве «нейромедиатора удовлетворения» дофамин входит в так называемую «систему вознаграждения» (она же – «система внутреннего подкрепления»), которая регулирует наше поведение при помощи положительных реакций на действия. Регуляция эта основана на желании заново пережить положительный опыт. Система вознаграждения тесно связана с обучением – при получении удовольствия в коре головного мозга формируются определенные причинно-следственные ассоциации, побуждающие нас испытать это удовольствие снова.

Как по-вашему – почему двигательная активность, начиная с простой прогулки и заканчивая участием в соревнованиях по триатлону, приносит нам удовлетворение? Потому что во время ее увеличивается выработка дофамина клетками головного мозга.

Также в качестве нейромедиатора дофамин участвует в обеспечении когнитивной деятельности – мыслительных процессов, приводящих к пониманию чего-либо. Дофамин выполняет роль своеобразного «переключателя внимания», помогающего нам переходить от одного этапа когнитивной деятельности к другому. При дофаминовой недостаточности замедляются психические процессы и возникают персеверации – «застревание» в сознании какой-нибудь одной мысли и неоднократное ее повторение вслух, монотонное повторение одного и того же движения и т. п. Если вас часто «заклинивает» на одной и той же мысли, то, возможно, вам стоит проверить – достаточно ли дофамина вырабатывают клетки вашего мозга.

Действие многих наркотических средств связано с увеличением выработки дофамина (до десятикратного), что вызывает выраженное чувство удовольствия. Некоторые наркотики, а также антидепрессанты, способны блокировать естественный распад дофамина в организме, повышая тем самым его концентрацию. Везде, где заходит речь об удовольствии, фигурирует дофамин. Разумеется, искусственная «дофаминизация» организма при помощи наркотических препаратов или того же никотина наносит организму огромный вред. Если вы хотите получать удовольствие без вредных последствий, то занимайтесь спортом, реализуйте свои способности, путешествуйте, наслаждайтесь вкусной едой, читайте интересные книги (такую, например, как эта), смотрите интересные фильмы, любите, веселитесь… Безопасных естественных способов получения удовольствия очень много.

В 1997 году профессор Кембриджского университета Вольфрам Шульц поставил серию весьма интересных экспериментов с участием обезьян.

В одном эксперименте у обезьяны по классической схеме вырабатывался условный рефлекс – после светового сигнала обезьяна получала порцию сока. Сок – это удовольствие, при ощущении которого увеличивается выработка дофамина.

Что, по вашему мнению, произойдет, если дать обезьяне сок без предварительного светового сигнала? Логика подсказывает, что без сигнала, то есть – без подготовки, дофамина должно быть выработано меньше. Но на самом деле (ах, как часто результат эксперимента опровергает ожидания!) при неожиданной даче сока вырабатывалось больше дофамина, чем при подаче предварительного сигнала.

Глава третья Гормоны стресса

Рис. 12

И это еще не все.

Шульц выявил еще одну «парадоксальную» особенность. Если на этапе формирования условного рефлекса выработка дофамина увеличивалась в ответ на питье сока, то после того, как рефлекс был сформирован, выработка начинала увеличиваться после подачи сигнала, еще до дачи сока. Питье сока дополнительного увеличения выработки дофамина не вызывало.

Если же после подачи сигнала обезьяне не давали сока, то при следующей подаче сигнала дофамина вырабатывалось меньше.

Вообще-то Шульц измерял не количество вырабатываемого в головном мозге дофамина, а активность дофаминовых нервных клеток головного мозга при помощи вживленных электродов, что было проще. Однако мы говорим о выработке дофамина не только простоты ради, но и потому, что возрастание или снижение активности клеток определяется количеством вырабатываемого дофамина.

В ходе другого эксперимента обезьянам каждый раз выдавались разные порции сока. В тех случаях, когда порция была большой, выработка дофамина резко увеличивалась.

В третьем эксперименте обезьяна нажимала на рычаг при появлении на экране монитора определенной комбинации фигур. Если задание выполнялось правильно, обезьяна получала сок. Выяснилось, что выработка дофамина возрастает не при питье сока, а при появлении на экране нужной комбинации фигур.

Своими экспериментами Шульц показал, что регуляция выработки дофамина клетками головного мозга – весьма сложный процесс, протекающий с участием высших отделов центральной нервной системы (коры больших полушарий головного мозга).

На этом мы прощаемся с дофамином и переходим к кортизолу, третьему из основных стрессовых гормонов.

О кортизоле речь пойдет в двух главах – в этой и в главе, посвященной «гормонам-инженерам», то есть тем гормонам, которые регулируют обмен веществ в организме.

Кортизол или гидрокортизон вырабатывается корковым слоем надпочечников под воздействием адренокортикотропного гормона гипофиза. Кортизол относится к так называемым «стероидным гормонам». В эту группу также входят половые гормоны, андрогены и эстрогены. Слово «стероиды», наверное, знакомо всем читателям. Чаще всего в быту его можно встретить в словосочетании «анаболические стероиды», это вещества, применяемые для улучшения спортивной формы, то есть – для наращивания мышц.

Если попросить человека, не имеющего медицинского или химического образования, дать определение слову «стероид», то ответ, скорее всего, будет таким: «Это вещества с высокой биологической активностью». Так-то оно так, да не совсем. Многие стероиды обладают высокой биологической активностью, но это свойство не делает их стероидами. Стероидами называются вещества, являющиеся производными циклопентанпергидрофенантрена. Вряд ли кто-то из читателей, за исключением биохимиков, сможет правильно выговорить слово «циклопентанпергидрофенантрен» даже с третьей попытки. Для удобства можно использовать более благозвучные синонимы – «стеран» или «гонан».

От слова «стеран» и произошло название производных – стероиды, что в переводе с латыни означает «стераноподобные».

Вот как выглядит молекула стерана:

Глава третья Гормоны стресса

Как вы видите, эта молекула состоит из четырех углеводородных колец – трех шестичленных и одного пятичленного. Стеран – насыщенный углеводород, то есть все атомы углерода в его молекуле соединены между собой простыми ординарными связями. Насыщенные углеводородные соединения вступают в химические реакции не так активно, как ненасыщенные, в молекулах которых помимо ординарных связей между атомами углерода есть двойные и тройные. Но, тем не менее, производных стерана известно много. Интересная деталь – в качестве исходного компонента для синтеза большинства стероидных гормонов выступает Великий и Ужасный холестерин, который поступает в наш организм вместе с пищей, а также вырабатывается в печени (в основном), а также в тонкой кишке, коже, почках, половых железах и надпочечниках.

Молекула холестерина или, как его еще называют, холестерола, выглядит так:

Глава третья Гормоны стресса

А вот так выглядит молекула кортизола (найдите семь отличий):

Глава третья Гормоны стресса

Стероидные гормоны, вырабатываемые в корковом слое надпочечников, называются глюкокортикоидами или глюкокортикостероидами. Приставку «глюко-» эти вещества получили благодаря своей способности повышать уровень содержания глюкозы в крови.

Официальное название кортизола для непосвященных звучит еще причудливее, чем слово «циклопентанпергидрофенантрен» – 4-прегнен-11?,17?,21-триол-3,20-дион. Каково? Если кто не знает, то столь длинные и сложные названия органическим соединениям даются не ради издевательства над непосвященными, а с определенной целью и по определенным правилам. Услышав название «циклопентанпергидрофенантрен», химик сразу же представит формулу вещества. Название – это код или, если говорить образно – паспорт химического вещества.

В чем заключается роль кортизола, как гормона стресса?

В первую очередь – в снабжении организма энергией, которая особенно необходима в стрессовых ситуациях. Все действие кортизола на обмен веществ направлено на добычу энергоресурсов. Кортизол повышает уровень содержания глюкозы в крови и препятствует ее захвату клетками тех органов, значение которых при стрессе относительно невелико, стимулирует распад жиров и белков (более подробно мы поговорим обо всем этом в главе, посвященной влиянию гормонов на обмен веществ). Целью всех этих действий является получение достаточного количества энергии, необходимого для интенсивной работы мышечной, сердечно-сосудистой и дыхательной систем, а также головного мозга.

Кортизол – это интендант нашего организма. Все те невероятные подвиги, которые совершают люди в стрессовых ситуациях, происходят благодаря энергии, любезно предоставленной организму кортизолом.

Кортизол – весьма умный интендант. Он не только мобилизует энергетические ресурсы в стрессовой ситуации, но и накапливает их во время обычной жизнедеятельности организма. Кортизол повышает аппетит. Когда вам хочется есть после интенсивной физической нагрузки или же на пике отрицательных эмоций, то знайте – в этом «виноват» кортизол. Помимо повышения аппетита, кортизол также способствует образованию жировых накоплений, потому что повышает уровень содержания глюкозы в крови. А глюкоза – это такой продукт, излишек которого наш организм при нормальной жизнедеятельности не выводит в окружающую среду, а откладывает про запас в виде жира.

Вы никогда не задумывались над тем, почему наш организм откладывает именно жировые запасы, а не белковые и не углеводные? Случайно ли это или закономерно? Конечно же – закономерно, поскольку жир представляет собой наиболее удобную, наиболее емкую, если так можно выразиться, форму хранения энергии. Если при расщеплении 1 грамма глюкозы или белка (до конечных продуктов) высвобождается 17,6 кДж[9] энергии, то при расщеплении 1 грамма жира – 38,9 кДж!

Для любого склада имеет значение не только его емкость, но и удобство погрузки и разгрузки. По сложности извлечения энергии при расщеплении жиры занимают промежуточное место между глюкозой и белками.

Но вернемся к кортизолу. С его снабженческой функцией мы разобрались. Но на этом «стрессовые» функции кортизола не заканчиваются. Помимо обеспечения организма энергией, кортизол повышает артериальное давление, причем делает это двояким образом, действуя напрямую и опосредованно. Напрямую кортизол повышает чувствительность сосудистых рецепторов к норадреналину, а опосредованно – способствует задержке в организме ионов натрия, стимулирует обратное всасывание ионов натрия в кровь в почках.

Глава третья Гормоны стресса

Рис. 13. Почечный клубочек

Здесь нам нужно сделать небольшое отступление и пояснить, что такое обратное всасывание в почках и почему повышение концентрации ионов натрия в крови вызывает подъем артериального давления. Те, кто все это знает, могут пропустить объяснение.

Поверхностный корковый слой почки содержит так называемые «почечные клубочки» – совокупность множества капиллярных петель, образующих фильтр для жидкости, переходящей из крови в почку. Каждый клубочек окружен соединительнотканной капсулой.

Если вы посмотрите на рисунок внимательно, то заметите, что выносящая артерия почечного клубочка гораздо у?же приносящей. Вследствие разницы в диаметрах артерий в клубочке создается повышенное давление крови и происходит фильтрация жидкой части крови[10] через стенки капилляров. В клубочке образуется так называемая «первичная моча», в которой, помимо вредных веществ, подлежащих выведению из организма (мочевина, мочевая кислота и др.), также содержатся полезные. Первичная моча представляет собой плазму крови только без белков, крупные молекулы которых не способны проходить через относительно небольшие поры в стенках почечных капилляров.

От капсулы отходит длинный извитый каналец, оплетенный кровеносными сосудами. Пока первичная моча проходит по этому канальцу, полезные вещества из нее успевают всосаться обратно в кровь. Этот процесс по-научному называется «реабсорбцией», что переводится с латыни как «обратное поглощение» или «обратное всасывание». В результате обратного всасывания образуется вторичная или «конечная» моча, содержащая ненужные организму вещества, растворенные в воде.

С обратным всасыванием мы разобрались. А для того, чтобы понять, почему повышение концентрации ионов натрия в крови вызывает подъем артериального давления, нужно вспомнить о таком физическом явлении, как осмос.

Если разделить два раствора с разной концентрацией одного и того же вещества частично проницаемой (полупроницаемой) мембраной, то есть такой, через которую смогут проходить только молекулы растворителя, то начнется процесс оттока молекул растворителя из раствора с меньшей концентрацией растворенного вещества в раствор с бо?льшей концентрацией, поскольку сообщающиеся растворы имеют тенденцию к выравниванию концентраций растворенных в них веществ.

Обратите внимание на частичную проницаемость мембраны, через поры в которой могут проникать только молекулы растворителя, но не растворенного вещества. Это очень важно. А теперь представьте в роли такой мембраны стенку капилляра. Внутри, то есть в крови, концентрация ионов натрия высокая, а снаружи, в межклеточном пространстве – низкая. Для выравнивания концентрации натрия молекулы воды из межклеточного пространства устремятся в кровь. Ионы натрия выйти в межклеточное пространство не могут, так как стенки капилляров для них непроницаемы. В результате всасывания воды из межклеточного пространства увеличится объем крови. А к чему приводит увеличение объема жидкости в замкнутой гидравлической системе? К возрастанию давления!

Глава третья Гормоны стресса

Рис. 14. Осмос

Помимо повышения артериального давления и управления энергоресурсами кортизол также обладает противовоспалительным действием, которое проявляется при повышенном его содержании в крови. Но при этом коллаген замедляет заживление ран из-за способности разрушать коллагеновые волокна. Коллаген – это белок нитевидной структуры, активно участвующий в процессах заживления. Рубцы, остающиеся на месте заживших ран, состоят из коллагена.

Кортизол вырабатывается под воздействием адренокортикотропного гормона гипофиза, выработка которого, в свою очередь, стимулируется кортиколиберином, вырабатываемым в гипоталамусе, где сходятся все нити управления эндокринными процессами в нашем организме.

А кто, по вашему мнению, управляет выработкой всех этих либеринов в гипоталамусе? Сами гормоны! По принципу отрицательной обратной связи. Повышение уровня содержания гормона в крови снижает выработку соответствующего либерина в гипоталамусе и наоборот. Наш организм – саморегулирующаяся система.

Пролактин, также называемый лактотропным или лактогенным[11] гормоном, вырабатывается в гипофизе. По химическому строению он является белком. Главной функцией пролактина у женщин является вызывание и поддержание выработки молока в молочных железах. Обратите внимание – пролактин вырабатывается как у женщин, так и у мужчин, но в меньших количествах. Мы подробно поговорим о пролактине в последующих главах, а сейчас коснемся только его роли при стрессе.

Зачем в стрессовых ситуациях повышается выработка пролактина? Для того, чтобы у женщин образовалось больше молока? Нет, не для этого. Стрессовое значение пролактина заключается в угнетении им болевой чувствительности. Обезболивающее действие пролактина в первую очередь нужно для того, чтобы кормящие не ощущали бы сильной боли при покусывании соска ребенком во время кормления. Но этот эффект носит генерализованный характер, то есть – распространяется не только на область сосков, но и на весь организм в целом. Согласитесь, что угнетение болевой чувствительности при стрессах имеет важное значение. При стрессовой ситуации существует возможность схватки, да и во время бегства низкая болевая чувствительность не помешает.

И в заключение – два слова о соматотропине. Выработка соматотропина при стрессе возрастает. Этот гормон приходит на помощь кортизолу и адреналину, помогает им обеспечивать организм энергией. Вспомните, что соматотропин повышает уровень содержания глюкозы в крови, а также стимулирует распад жиров. Снабжение организма энергией в стрессовой ситуации – задача огромной важности, а решение таких задач обычно поручают не одному сотруднику, а группе.

Можете выдохнуть и расслабиться. Стрессы остались позади. В следующей главе речь пойдет о гормонах-защитниках и гормонах-вредителях.

Резюме

Существует четыре гормона стресса, выработка которых увеличивается при стрессовых состояниях – адреналин, норадреналин, кортизол и пролактин.

Адреналин (или эпинефрин) – это основной гормон, вырабатываемый мозговым веществом надпочечников.

В нашем организме существует пять типов адренорецепторов – рецепторов, способных связываться с адреналином и норадреналином.

?1-адренорецепторы находятся в мельчайших артериях, которые называются «артериолами». Стимуляция этих рецепторов приводит к сужению артериол, спазму их стенок.

?2-адренорецепторы, которые также находятся в артериолах, при взаимодействии с адреналином производят обратное действие – расширяют просвет артериол.

?1-адренорецепторы находятся, главным образом, в сердечной мышце. Их стимуляция приводит к увеличению частоты и силы сердечных сокращений. Также эти рецепторы находятся в почках.

?2-адренорецепторы находятся в мельчайших бронхах, которые называются «бронхиолами». Их стимуляция вызывает расширение бронхиол. Также эти рецепторы находятся в печени, где при стимуляции увеличивают распад гликогена и тем самым увеличивают поступление глюкозы в кровь.

?3-адренорецепторы находятся в жировой ткани. Их стимуляция усиливает распад жиров, сопровождающийся выделением энергии.

Функции адреналина следующие:

– адреналин вызывает выраженное сужение сосудов органов брюшной полости, кожи и слизистых оболочек, а также в незначительной степени сужает сосуды скелетных мышц;

– адреналин расширяет сосуды головного мозга;

– адреналин усиливает сердечные сокращения и повышает их частоту, что также приводит к повышению артериального давления;

– адреналин вызывает расслабление мускулатуры бронхов, кишечника и мочевого пузыря;

– адреналин вызывает сокращение радиальной (круговой) мышцы радужной оболочки, что приводит к расширению зрачка;

– адреналин повышает уровень содержания глюкозы в крови и помогает клеткам организма захватывать и использовать ее; также адреналин стимулирует распад жиров и тормозит их синтез;

– при продолжительном воздействии в умеренных количествах адреналин вызывает увеличение сердечной и скелетных мышц, способствуя адаптации организма к повышенным физическим нагрузкам;

– при продолжительном воздействии в высоких количествах адреналин вызывает усиленный распад белков;

– адреналин оказывает стимулирующее воздействие на центральную нервную систему;

– адреналин оказывает выраженное противоаллергическое и противовоспалительное действие;

– при искусственном введении (инъекции) адреналин уменьшает кровенаполнение пещеристых тел полового члена, снижая тем самым эрекцию;

– адреналин оказывает стимулирующее действие на свертывающую систему крови, что в сочетании со спазмом артериол выражается в остановке или ослаблении кровотечений, то есть – в уменьшении кровопотери;

– адреналин через гипоталамус стимулирует выработку адренокортикотропного гормона в гипофизе.

Основные функции норадреналина совпадают с функциями адреналина, однако имеются и различия, обусловленные тем, что норадреналин преимущественно связывается с ?-рецепторами. Норадреналин оказывает более выраженное сосудосуживающее действие, чем адреналин, но гораздо слабее влияет на обмен веществ, на сердце, на бронхи, на кишечник и пр.

Кортизол в качестве гормона стресса занимается снабжением организма энергией – повышает уровень содержания глюкозы в крови и препятствует ее захвату клетками тех органов, значение которых при стрессе относительно невелико, стимулирует распад жиров и белков. Во время обычной жизнедеятельности организма (вне стрессов) кортизол накапливает энергетические ресурсы – повышает аппетит, способствует образованию жировых накоплений. Также кортизол повышает артериальное давление.

Пролактин имеет значение при стрессах, поскольку угнетает болевую чувствительность.

Также при стрессе возрастает выработка соматотропина, который, подобно кортизолу и адреналину, повышает уровень содержания глюкозы в крови, а также стимулирует распад жиров. Соматотропин дает организму дополнительную энергию. В стрессовой ситуации энергия лишней не бывает.

Похожие книги из библиотеки