Сердечные тайны
Есть в организме человека орган, пользующийся особым вниманием. Это наш "вечный двигатель" сердце. Именно оно - источник жизни, с ним олицетворяют чувства, характер, его состоянием определяют помыслы, мечты, стремления. Да и вообще вся жизнь людей в длинной многовековой истории человеческого общества издавна связывалась с сердцем. Когда мы говорим "добросердечный человек", "легко или тяжело на сердце", "сердцем почувствовал", мы уже тем самым выделяем сердце из общего перечня всех органов и отводим ему особое место в нашей жизни.
Если подходить формально и считать, что сердце, как впервые в 1628 году написал древнеримский врач и анатом В. Гарвей, не что иное, как насос, перекачивающий кровь, то даже эта его функция уже настолько важна и уникальна, что дает право относиться к нему с должным уважением.
Работая без устали, сердце в течение всей жизни перекачивает кровь и днем и ночью. Почему оно не устает и не останавливается? Откуда оно знает, с какой скоростью сокращаться и когда менять свой ритм? Что заставляет его поддерживать общий объем циркулирующей крови равномерно в артериальном и венозном руслах? Таких вопросов можно задать десятки.
До 50-х годов нашего столетия ответ на все вопросы был однозначен: регуляция деятельности сердца осуществляется нервно-рефлекторными механизмами. И это правда. Но только ли ими? И все ли проявления сердечной деятельности контролируются нервной системой? Ведь, например, для поддержания кровяного давления на строго определенном уровне необходимо участие, наряду с внутренними механизмами самого сердца, и клеток надпочечника и канальцевого аппарата почек. Но ведь трудно даже представить существование такой сложной (и просто длинной!) рефлекторной дуги, которая бы замыкала сердце через надпочечники с почками. Сама собой напрашивалась гипотеза о существовании в сердце какого-то химического фактора, участвующего в регуляции объема циркулирующей крови, давления крови, выведении из организма натрия, калия и воды. Косвенно об этом свидетельствовал и факт увеличения выведения из организма натрия и воды при растяжении верхних отделов сердца у экспериментальных животных.
Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться? Подозрение стали вызывать описанные в 60-х годах нашего века американцами Б. Кишем, Дж. Джеминсоном и Дж. Паладе электронно-плотные гранулы в мышечных клетках предсердий, очень похожие на секреторные гранулы эндокринных клеток. И действительно, при проведении тщательных сравнительных исследований в 1974 году группа канадских ученых из университета в Монреале во главе с M. Кантеном и Ж. Жене установила структурное сходство этих гранул с эндокринными гранулами апудоцитов гипофиза и поджелудочной железы.
Если химический фактор, обладающий биологической активностью, в сердце существует, то где он может находиться?
Проведенные авторадиографические исследования с введением в организм животных меченых аминокислот позволили установить пептидную природу этих гранул. Не имея подходов к прямой идентификации пептидного гормона, синтезируемого в гранулах предсердий, исследователи предприняли "обходной маневр" - решили посмотреть, существует ли зависимость между изменением количества секреторных гранул в миокардиальных клетках и такими важными физиологическими процессами для саморегуляции деятельности сердца, как выведение из организма воды и натрия. Эксперименты подтвердили такую связь: сотрудник Парижского университета П. Атт в 1976 году обнаружил увеличение количества гранул в мышечных клетках сердца при гипонатриевой диете животных, а в 1981 году в Королевском университете Кингстона (Канада) А. де Болд и X. Зонненберг установили быстрое, кратковременное, но значительное увеличение диуреза (выведения жидкости из организма) и натрийуреза у крыс с введенным гомогенатом предсердий других крыс. Пептидный фактор, содержащийся в гомогекате, решили назвать предсердным натрийурическим фактором (ПНФ). Таким образом, впервые появились основания считать сердце эндокринным органом. Уже упоминавшиеся нами Марк Кантен и Жак Жене так и назвали свою статью о ПНФ, опубликованную в журнале "Scientific American", "Сердце - эндокринная железа".
Познакомившись накоротке с новым гормоном, ученые решили детально разобраться с его родословной и способностями. В июне 1983 года M. Каитен, Ж. Жене и Р. Натт сумели выделить, очистить и впоследствии синтезировать ПНФ. Он оказался полипептидом, состоящим из 28 аминокислотных остатков. Совсем недавно был идентифицирован геи, кодирующий синтез ПНФ, налажен биотехнологический выпуск этого гормона и моноклональных антител к нему. Получение специфических антител к ПНФ дало возможность в короткие сроки изучить распределение ПНФ в организме человека и животных и оценить его биологические эффекты.
Клетки, вырабатывающие ПНФ, не являются истинно эндокринными. Это - кардиомиоциты (мышечные клетки предсердий), которые в процессе своего развития приобрели специфическую функцию эндокринных клеток - способность синтезировать гормоны. Подобные кардиомиоциты - не единственный и далеко не уникальный пример клеток-сфинксов, или, как их еще называют, клеток-химер, сочетающих одновременно структурные и функциональные черты клеток различных тканевых типов. Мы уже упоминали о том, что способность к синтезу гормонов присуща и остеобластам (костным клеткам), и гепатоцитам - клеткам печени, и некоторым клеткам крови - моноцитам, тромбоцитам, эозинофилам, лимфоцитам. Это не случайно. Тем самым проявляются ауторегуляторные свойства клеточных структур - заложенный природой механизм их быстрой (иногда моментальной) адаптации к изменяющимся условиям существования. Кардиомиоциты, синтезирующие ПНФ, - прекрасный пример проявления природой той функциональной разумности, которая не перестает поражать ученых и конструкторов. Признавая это, они создали особую науку - бионику, разрабатывающую технологические механизмы на основе устройства и функционирования биологических систем.
Саморегуляция работы сердца - "вечного двигателя" человеческого организма, далеко еще не познана. Во многих странах и лабораториях группы различных специалистов разгадывают его тайны. Настойчивость и целеустремленный поиск способствуют успеху. Открытие ПНФ - еще один важный этап в этом неустанном поиске.
Итак, ПНФ находится в секреторных гранулах мышечных клеток предсердий. Обладая важными биологическими свойствами - способностью менять ритм деятельности сердца через иоино-натриевые механизмы, которые, в свою очередь, включают целую цепь обменных процессов, он, как верный страж порядка в организме, готов в любую минуту по первому зову прийти на помощь. Что же служит сигналом к его выбросу в кровь и началу его деятельности? Пусковым фактором, как установили ученые, является растяжение кардиомиоцитов. Как только увеличивается объем циркулирующей крови в силу различных причин (например, при физических нагрузках, эмоциональных переживаниях - прилив крови при волнениях, родовой деятельности и т. п.), сразу увеличивается концентрация ПНФ в крови. Причем это повышение довольно значительно. Так, у экспериментальных животных при создании стрессорной ситуации уровень ПНФ возрастает в 10-20 раз, у больных сердечными пороками с увеличенным объемом циркулирующей крови концентрация ПНФ в крови повышается в 6-8 раз.
Увеличение содержания ПНФ сразу же влечет за собой уменьшение концентрации натрия в содержимом почечных канальцев, что, в свою очередь, стимулирует выработку почками особого гормона - ренина, который ответственен за изменение уровня артериального давления. Патология выработки ренина лежит в основе многих форм гипертонической болезни, особенно развившейся в молодом возрасте. Кардиомиоциты, регулируя выработку ПНФ, "следят" за изменением концентрации ренина и тем самым контролируют уровень артериального давления в организме.
ПНФ также определяет тонус сосудистой стенки, участвует в процессах изменения калибра сосудов путем влияния на мышечную стенку артерий и вен. И если добавить, что ПНФ действует на процессы переноса кальция на мембраны кардиомиоцитов, которые лежат в основе возбудимости и сократимости миокарда, то становится очевидным, что именно ПНФ является универсальным регулятором всех проявлений сердечной деятельности. Как раз этим объясняется такой повышенный интерес к данному гормону, наблюдаемый сейчас не только среди теоретиков, но и среди клиницистов-кардиологов. Он уже находит выход в практику.
В последние годы ведутся обширные исследования по изучению возможности применения ПНФ в качестве лекарственного средства для лечения различных заболеваний сердца. Так, имеются данные о хорошем терапевтическом эффекте ПНФ при гипертонии, застойной сердечной недостаточности, нарушениях ритма сердца после перенесенных инфекций и инфаркта миокарда.
ПНФ способен связываться с различными структурными элементами ресничного тела глаза и принимает непосредственное участие в регуляции внутриглазного давления. Это открывает новые методические возможности в успешном лечении такого тяжелого и распространенного заболевания, как глаукома, которая ежегодно приводит к слепоте десятки тысяч человек.
Поскольку ПНФ существенно влияет на выделение солей и воды почками, в последние годы начали изучать возможность его применения у больных с соответствующей патологией.
Поиск ведется, но существует еще много препятствий на пути создания лекарственных препаратов на основе ПНФ. Пока еще неизвестны все факторы, вызывающие выброс ПНФ из кардиомиоцитов, неясны механизмы воздействия ПНФ на почечные канальцы. К сожалению, пока еще не разработаны надежные методы получения аналогов ПНФ, способных избирательно связываться с теми или иными структурами, что крайне необходимо для прицельного лечения различных заболеваний. Эти вопросы требуют своего выяснения. И здесь есть все основания для оптимизма. Ведь решение подобных частных проблем гораздо проще, чем установление фактов о наличии ПНФ (предсердного натрийурического фактора) и его локализации.
Можно надеяться, что к концу XX столетия медицина получит новые мощные кардиотропные лекарственные препараты, которые будут успешно применяться при лечении различных заболеваний.
Так история с загадочным незнакомцем ПНФ опять подтверждает революционизирующую роль эндокринологии в современной биологии и медицине.