532

Мозг, разум и поведение

Диагностика и лечение мозговых расстройств в будущем

Диагностика и лечение мозговых расстройств в будущем

Болезнь Альцгеймера, болезнь Гентингтона, шизофрения, маниакально-депрессивный психоз — все они имеют некоторые общие черты. Это хронические заболевания неизвестного происхождения. Если даже они не прогрессируют, то по крайней мере периодически повторяются. Большую часть их можно лечить с помощью препаратов, полезность которых была обнаружена путем проб и ошибок, а не предсказана исходя из теоретических представлений о природе болезни. Лишь много позже при изучении этих болезней были выявлены специфические молекулярные и клеточные изменения в мозгу страдавших ими людей. Ввиду особого значения, которое придают сейчас нейромедиаторам при изучении мозговых расстройств, нам нужно будет поближе познакомиться с этой областью исследований.

Представление о важной роли нейромедиаторов в патогенезе того или иного заболевания имеет по меньшей мере два преимущества. Во-первых, оно дает четкий ориентир для поисков возможной причины болезни. Это особенно ценно, если такие же изменения в медиаторных системах можно воспроизвести у животных. Например, в последние два года у взрослых, но еще молодых наркоманов, употребляющих героин, была выявлена новая форма болезни Паркинсона. Была установлена ее связь с примесью определенного вещества, применяемого при синтезе героина в подпольных лабораториях. Когда это вещество вводили обезьянам, у них обнаруживались все симптомы паркинсонизма. Полученные данные свидетельствовали о том, что болезнь Паркинсона у людей всецело обусловлена нехваткой дофамина в клетках и нервных сетях и что эта нехватка может быть результатом воздействия определенного токсичного вещества, которое используется также и в промышленности. Воспроизведение тех же результатов у животных позволяет объяснить, почему частота болезни Паркинсона растет параллельно с индустриализацией.

Во-вторых, сосредоточив свое внимание на связях между нейромедиаторами и болезнями центральной нервной системы, ученые смогут также искать новые способы лечения, которые отличались бы большой эффективностью и избирательностью действия. Появление препарата L-ДОФА ознаменовало возможность прямой атаки на клеточные дефекты, связанные с функцией дофамина. Распространенные ранее методы были направлены на устранение симптомов (например, мышечной скованности и ригидности) в результате эмпирического выявления побочных эффектов лекарств, назначавшихся по совершенно иному поводу. В не до конца понятой нервной системе человека любой симптом может быть следствием нескольких причин. Знание специфических клеточных аномалий сужает диапазон возможностей при выборе способов лечения и уменьшает вероятность ошибок.

Таким образом, изменения медиаторов позволяют дать болезни единое объяснение, а также могут служить основой для поисков специфических методов лечения. Разумеется, доказательство того факта, что определенное изменение в медиаторах однозначно связано с определенной болезнью, не обязательно должно вести к выводу, что это изменение и есть «причина» болезни. Оно может быть надежным диагностическим признаком. Может даже оказаться, что некоторые болезни мозга с еще неясной этиологией вообще никак не связаны с известными медиаторами, а возникают вследствие патологических изменений еще не открытых механизмов. Можно было бы предположить, что симптомы таких болезней не имеют реальной органической основы и что улучшение, вызываемое лекарственными препаратами, в таких случаях бывает неспецифическим; такие препараты могут даже быть вредными. Однако не исключено и то, что ответственный за какое-то заболевание медиатор просто еще не открыт — ведь неизвестных медиаторов, вероятно, еще много. Обратимся к рассмотрению этой возможности.

Новый мир нейромедиаторов

Сейчас уже должно быть ясно, что «ассортимент» специфических нейромедиаторов достаточно разнообразен. Он продолжает увеличиваться, и каждый раз, когда ученым удается обнаружить в мозгу новый медиатор, это открытие помогает прояснить те механизмы, с помощью которых один нейрон регулирует активность других соединенных с ним нейронов. Если вы помните, в главе 2 мы разделили медиаторы по их действию на две основные категории и назвали их безусловными и условными медиаторами. Возбуждающее или тормозное действие безусловного медиатора не зависит от ситуации, в которой осуществляется передача сигнала, тогда как действие условных медиаторов зависит от других сигналов, которые одновременно приходят к постсинаптической клетке.

До сих пор мы почти не касались химизма нейромедиаторов, да и сейчас не собираемся особенно углубляться в этот вопрос. Однако для оценки перспектив дальнейших исследований нам все же полезен будет ряд самых общих сведений.

Как происходит открытие новых медиаторов? В центральной нервной системе в наибольших количествах содержатся медиаторы с самой простой химической структурой — аминокислоты. Преобладают здесь медиаторы, используемые «безусловными» возбуждающими нейронами в иерархических сетях, такие как глутаминовая и аспарагиновая кислоты. Безусловные тормозные воздействия нейронов в локальных сетях тоже могут осуществляться с помощью простых аминокислот, но с несколько иной химической структурой, какова, например, гамма-аминомасляная кислота (ГАМК).

Такого рода простые аминокислоты либо поступают в организм с пищей, либо очень быстро синтезируются в специфических нейронах. Другие медиаторы образуются путем более глубоких химических перестроек пищевых аминокислот. Именно так получаются ацетилхолин и моноамины — в результате одноступенчатых или двухступенчатых ферментативных процессов в соответствующих нейронах. Вы уже встречались с моноаминами — группой химически сходных медиаторов — и знаете их под их индивидуальными названиями: это дофамин, норадреналин и серотонин. Почти все нейроны, выделяющие моноамины, образуют дивергентные сети с одним входом. Концентрация медиаторов-моноаминов в мозгу приблизительно в тысячу раз ниже, чем аминокислотных медиаторов. Если все синаптические окончания содержат примерно одинаковое количество медиатора, то относительная концентрация медиаторов во всем мозгу или в каком-либо его участке может служить приближенным показателем общего числа имеющихся в нем синапсов с тем или иным медиатором. В соответствии с этой грубой оценкой можно полагать, что на каждую тысячу аминокислотных синапсов приходится только один моноаминовый.

Почти все аминокислоты, ацетилхолин и моноамины, которым приписывают сегодня вероятную роль центральных медиаторов, были впервые обнаружены по их действию вне мозга — в вегетативной нервной системе или ганглиях некоторых беспозвоночных, например. За последнее десятилетие новых аминокислотных или моноаминовых медиаторов по существу не было найдено. Это может означать, что нам уже известны все существующие медиаторы этих двух типов.

Нейромедиаторы третьего типа — пептиды — тоже синтезируются из аминокислот, но более сложным путем. Для образования пептида несколько различных аминокислот должны соединиться в строго определенной последовательности. Построение таких химических цепей происходит в цитоплазме клеток, в так называемом шероховатом эндоплазматическом ретикулуме. В ядре нейрона на его ДНК для каждого необходимого пептида синтезируется специальная химическая матрица, называемая информационной, или матричной, РНК (мРНК). Она как бы копирует последовательность оснований ДНК. В эндоплазматическом ретикулуме по «инструкциям» мРНК синтезируются пептиды. Во всех известных случаях первоначальная пептидная цепь намного длиннее, чем это необходимо; соответствующие ферменты нейрона сокращают ее до нужной длины, подготавливая для секреции в синапсах. Различных пептидных медиаторов существует намного больше, чем аминокислотных или моноаминовых, и доля отдельного пептида во всей массе таких пептидов лишь приближается к 1%.

Перспективные направления современных исследований. Первыми из нейропептидов были открыты вазопрессин и окситоцин. Вначале они были описаны как гормоны, выделяемые задней долей гипофиза; лишь много позднее выяснилось, что эти же самые вещества играют роль медиаторов и внутри мозга.

Многие известные сегодня нейропептидные медиаторы стали вызывать особый интерес из-за своих очень низких концентраций и исключительно мощного действия. Большинство их было открыто в результате исследований двоякого рода: при поисках гипофизотропных гормонов гипоталамуса (либеринов, см. гл. 4) и при изучении недавно обнаруженных гормонов, воздействующих на нейроны диффузной нервной системы кишечника. Каждое из этих направлений привело к открытию нескольких пептидов центральной нервной системы.

Большое внимание привлекла одна группа мозговых пептидов, действие которых на клеточном и поведенческом уровнях сходно с действием наркотика морфина. Эти морфиноподобные пептиды, образующиеся в самом мозге, получили название эндорфинов (сокращение слов «эндогенный морфин»). Открытие эндорфинов в середине 1970-х годов явилось результатом любознательности двух английских фармакологов — Ханса Костерлица и Джона Хьюза. Почему, спросили они себя, мозгу свойственна столь точная и чувствительная реакция на морфин — препарат, которым активно пользуются всего каких-нибудь 100 с небольшим лет? Эти ученые высказали смелое предположение, что в мозгу, может быть, есть какие-то еще не открытые естественные медиаторы, рецепторы которых могут реагировать также и на морфин, будучи не в состоянии отличить этот «поддельный медиатор» от настоящего. Такими естественными медиаторами оказались эндорфины, которые, как мы уже знаем из главы 6, играют исключительно важную роль в способности мозга функционировать при воздействии боли.

Успех этого исследования породил мысль о том, что и другие препараты, действие которых на мозг еще не получило объяснения, — например, транквилизаторы и противосудорожные средства, — тоже могут имитировать какие-то пока не открытые эндогенные медиаторы. Поиски таких веществ сейчас уже ведутся. Кроме того, совсем недавно возникла и получила воплощение еще одна исследовательская стратегия. А именно, с помощью методов генной инженерии пытаются найти ответ на такой вопрос: сколько других редких молекул может синтезировать мозг? Например, сколько различных мРНК образуется в мозговых клетках и какая доля их кодирует нейропептиды? Согласно одной из приближенных оценок, возможно, что предстоит обнаружить еще сотни новых эндогенных медиаторов.

Прежде чем эти новейшие методы приведут к действительному открытию новых важных медиаторов, предстоит преодолеть огромные трудности. Однако многие ученые считают, что цель оправдывает усилия. Каждый вновь обнаруженный нейромедиатор открывает новые возможности для выявления неизвестных структурных взаимоотношений или подтверждения предполагаемых, для распознавания новых «команд» в химическом словаре нейронов, для разработки новых методов диагностики заболеваний.

От биологии к патологии

Оценка патологии мозга по данным точного анализа изменений в медиаторах — по их количеству и динамике в ходе болезни — стала важной областью исследований. Нейрохимическая патология как научная дисциплина сосредоточила внимание в первую очередь на нехватке какого-либо медиатора как показателе болезни и на замещении недостающего медиатора как методе лечения. В случае шизофрении имеющиеся факты позволяют думать, что ключом к лечению может быть снижение чрезмерной активности дофаминовой системы. Однако в случае болезни Альцгеймера попытки подобрать препараты, которые заменили бы все недостающие медиаторы системы, едва ли могут привести к успеху. Поэтому следует подумать и об иных способах лечения расстройств центральной нервной системы.

Некоторые альтернативные концепции патологии. Причиной некоторых патологических состояний может быть «простой» дефицит или избыток известного или еще не обнаруженного медиатора. Но расстройства центральной нервной системы могут возникать и тогда, когда сами медиаторы аномальны и передают неверные сигналы. Это может повлечь за собой изменения в активности нейронов, приводящие к симптомам заболевания. Нетрудно представить себе, как могут возникнуть аномальные медиаторы. Разрыв в нормальной цепи ферментативных реакций, например, может привести к тому, что вместо одного вещества (аминокислоты, моноамина или пептида) будет синтезироваться другое, необычное. Стоит измениться или выпасть одному основанию в ДНК соответствующего гена, и изменится образующаяся мРНК, что может привести к существенному изменению нейропептида, а тем самым и сигнала, который он передает постсинаптическим клеткам.

Вы, возможно, замечали, что всякий раз, когда речь заходит о специфических расстройствах поведения, мы вспоминаем о дивергентных системах с одним входом. Используемые в этих системах медиаторы были открыты в числе первых и поэтому изучены лучше других. Кроме того, для их детального исследования был разработан целый ряд экспериментальных методов. Однако мы вновь обращаемся к ним по другой, более интересной причине: дело в том, что эти медиаторы могут использоваться в терапии независимо от того, связана ли болезнь с изменением их функции.

Сильно разветвленная структура дивергентных сетей с одним входом означает, что относительно немногочисленные нейроны имеют возможность контролировать множество других нервных клеток. Поэтому в случае каких-либо нарушений нормальной синаптической передачи в этих сетях (в результате болезни или фармакологических воздействий) реактивность многих мишеней будет усилена или ослаблена. Таким образом, медиаторы могут не быть первопричиной патологии даже при таких нарушениях, при которых препараты, влияющие на такие сети, частично восстанавливают их функцию. Лекарства могут всего лишь обеспечивать общее улучшение взаимодействий между нейронами. Источником патологии может быть практически любое звено в процессе регуляции количества медиатора, высвобождаемого для передачи каждого импульса, так же как и любое изменение в реактивности постсинаптических клеток-мишеней. Патологический процесс может также быть связан с нарушением каких-то зависимостей, определяющих скорость синтеза нужного медиатора и поддержание его запасов. Кроме того, мы еще мало что знаем о факторах, регулирующих рост мозговых нейронов, который происходит даже у взрослого человека. Но и они в конце концов будут подвергнуты экспериментальному анализу.

В настоящее время все чаще и чаще высказываются предположения о роли еще одного патологического механизма, который сейчас трудно, а может быть, и невозможно исключить из числа вероятных причин. Речь идет о нераспознанных латентных вирусных инфекциях. У нейронов, по-видимому, имеются поверхностные молекулы, очень сходные с рецепторами на поверхности лейкоцитов, циркулирующих в кровяном русле и вырабатывающих антитела. У лейкоцитов эти рецепторы распознают чужеродность вторгшегося инфекционного агента и мобилизуют другие лейкоциты для совместных действий по его уничтожению или по развитию иммунной реакции. У нейронов сходные рецепторы могли бы обеспечивать вирусам временное убежище на поверхности клетки, а может быть, и внутри нее, прежде чем они смогут быть уничтожены в результате иммунных процессов. Возможно, например, что вирус бешенства проникает в мозг потому, что он первоначально присоединяется к ацетилхолиновым рецепторам мышечных клеток.

Невидимая патология. Любая из этих предполагаемых причин могла бы привести к развитию болезни, происхождение которой неизвестно. Основная проблема заключается не в том, чтобы строить догадки по поводу того, каким образом нормальные физиологические процессы могли бы быть нарушены, а в том, чтобы выяснить, действительно ли они нарушены и как именно. Распознать изменения на молекулярном уровне — например, выявить аномальный вариант редкого медиатора или аномальные факторы роста в мозгу человека — с помощью современных методов пока невозможно.

Следует отметить также, что некоторые расстройства ЦНС, особенно те, которые могут появляться и исчезать, не обязательно должны быть связаны с аномалиями «жестких» механизмов — например, нейронных сетей или медиаторов. Вполне возможно, что происходят какие-то сбои в «гибких» механизмах — в программах последовательного анализа, синтеза и сравнения информации. Пока об этих процессах не известно почти ничего, кроме их конечного результата. Это предположение в настоящее время еще нельзя проверить, а непроверенные идеи, к сожалению, полезны лишь тогда, когда их можно сформулировать в виде гипотез, доступных для экспериментальной проверки.

От клеточной патологии к лечению

Что принесет нам будущее в смысле более четкой диагностики тех болезней центральной нервной системы, причины которых пока неизвестны? Сможем ли мы избирательно воздействовать на них и каковы могут быть меры профилактики? Наука о нервной системе вступает в период новых возможностей. В растущей шеренге вновь обнаруженных мозговых пептидов большинство еще плохо изучено, и пока нет точных данных об их количествах у здоровых людей, не говоря уже о больных с мозговыми расстройствами. В худшем случае окажется, что они вообще не имеют отношения к этим расстройствам. Может быть, знание количественных показателей поможет медикам дифференцировать болезни, объединяемые ныне по сходству симптомов, такие как шизофрения, аффективные расстройства, двигательные нарушения, слабоумие, эпилепсия и др. Если внутри этих категорий удастся распознать действие различных биологических факторов, можно будет, вероятно, выделить разные подтипы. Это в свою очередь привлечет внимание исследователей к разнообразию причин и способов лечения, различным мерам профилактики и различным гипотезам относительно процессов, лежащих в основе заболевания.

Несомненно, именно эти перспективы заставляют разочарованных неудачами клиницистов все-таки следить за достижениями в области изучения нейромедиаторов. Некоторые из наиболее мощных новых методов [таких, как позитронноэмиссионная трансаксиальная томография (ПЭТТ) или ядерный магнитный резонанс], выявляющих изменения метаболизма, кровотока, электрофизиологических или эндокринных функций в процессе мышления, могут помочь в диагностике функциональных нарушений и в определении их анатомической локализации. Однако мы еще не имеем никакого представления о том, каким образом события молекулярного уровня преобразуются в действия, которые мы приписываем работающему мозгу. Нужно выявить эти связи, если мы хотим узнать, действительно ли молекулярные события могут приводить к специфическим мозговым расстройствам и как это происходит.

Замещение поврежденных частей мозга. Если перейти к более отдаленной перспективе, можно предположить, что когда-нибудь неисправные или дегенерирующие участки мозга удастся заменять путем пересадки эмбрионального или периферического нейронного материала непосредственно в ту часть мозга, где имеется повреждение. Уже осуществлена трансплантация клеток мозгового вещества надпочечника, выделяющих катехоламины, в хвостатое ядро подопытных животных, а также людей, страдающих паркинсонизмом. Пересадка нервной ткани была основной темой целой серии экспериментов на животных, однако условия, необходимые для успешного применения этого метода в клинике, еще не выяснены. Экспериментальные исследования позволяют предположить, что некоторые наследственные аномалии гипоталамических нейронов поддаются лечению путем пересадки небольших фрагментов нормальной ткани гипоталамуса от совместимого животного-донора. Однако источники материала для пересадок в мозг человека, вероятно, никогда не станут легко доступными (если не считать некоторых видов железистой ткани, например мозгового вещества надпочечников, и диффузной нервной ткани кишечника).

Следующим шагом в разработке заместительной терапии могла бы быть имплантация искусственно созданной вирусоподобной частицы, содержащей необходимый ген, выделенный из кожи или лейкоцитов здорового родителя, брата или сестры больного. Однако, прежде чем помышлять о таких пересадках, нужно еще очень многое выяснить, в том числе найти способ активации генов, которые в коже и кровяных клетках в норме неактивны.

Еще более проблематичными представляются исследования по созданию нейронных «мостов» в местах повреждения волокнистых трактов. В главе 2 мы вскользь упоминали о том, что нейроны центральной нервной системы, возможно, обладают некоторой способностью к регенерации. Имеющиеся данные как будто указывают на то, что поврежденные связи даже в головном мозгу могут восстанавливаться, если только этому не препятствуют факторы, тормозящие рост. (Возможно, что эти факторы в нормальных условиях обеспечивают стабильность большинства связей мозга; без них в условиях повышенной активности мозговых нейронов пластичность могла бы достичь такой степени, что под угрозой оказалась бы сама структура мозга.)

Способность нейронов головного мозга к регенерации явилась предметом экспериментальных исследований, проводившихся в Канаде и Швеции. Сначала в мозговой ткани животного производили повреждение. Затем из другого места брали отрезки периферических нервов, аксоны которых легко регенерируют, восстанавливая утраченные связи. Концы вырезанного участка нерва вводили в ткань мозга по обе стороны от места повреждения. По-видимому, в этих условиях многие виды центральных (мозговых) нейронов способны врастать сначала в отрезок периферического нерва, а затем — из другого его конца — обратно в мозг. Экспериментальные повреждения, наносимые животным, имитировали повреждения нервной ткани, возможные у людей при травме позвоночника или проникающем ранении головы. Результаты описанного метода дают некоторые основания надеяться, что со временем будут найдены и иные способы восстановления тканей мозга.

Замена компьютерами. Центральная нервная система — по крайней мере как мы сейчас понимаем ее возможности саморегулирования — не может использовать свою потенциальную способность к регенерации. В связи с этим многие ученые ищут пути устранения некоторых дефектов сенсорной функции с помощью компьютеризованных роботоподобных устройств, которыми можно было бы даже заменять неисправные компоненты. Для того чтобы найти способ обеспечить слепых людей хотя бы примитивным «тактильным зрением», в лабораториях используют принцип видеосканирования в сочетании с кожной стимуляцией. Некоторые формы нервной глухоты поддаются экспериментальному лечению с помощью звукочувствительных приборов, вживленных прямо в улитку. Применение таких приборов возможно потому, что наши сенсорные процессы состоят из отдельных этапов, которые могут быть воспроизведены искусственными устройствами.

Сходным образом знание всех этапов, с которыми связан запуск программ мышечной активности (ходьбы, например), позволит с помощью компьютеров преодолеть последствия паралича после травмы спинного мозга. Сначала компьютеры, получающие информацию о мышечной активности от расположенных на коже электродов, зарегистрируют последовательность мышечных сокращений при ходьбе или стоянии. Затем над мышцами парализованного больного поместят кожные стимулирующие электроды, с помощью которых будут «проигрываться» соответствующие программы. Закодированные стимулы прикажут мышцам действовать. И тогда, несмотря на повреждение, парализованный человек действительно сможет стоять и ходить — ведь компьютер будет непосредственно управлять мышцами.

Искусственный интеллект. На стыке двух наук -экспериментальной науки о нервной системе и кибернетики — постепенно закладываются основы для создания таких устройств, которые в конце концов смогут воспроизводить отдельные этапы сбора и переработки информации в сложном процессе умственной деятельности человека. Одни ученые пытаются заложить в компьютеры поведенческие программы, чтобы получились более компетентные и «человекоподобные» системы. Другие стремятся создать машинные модели предполагаемых механизмов работы мозга, исходя из особенностей поведения животных или изменений активности связанных друг с другом нейронов. Затем модель подвергают проверке, пытаясь предсказать, как система будет реагировать на новые условия.

Не исключено, что в один прекрасный день мы сможем «подключать» свой мозг к компьютеру и фиксировать в его безошибочной памяти все наши ощущения и переживания. Если это когда-нибудь произойдет, мы, может быть, еще пожалеем о том, что получили возможность в точности узнавать, как что-то происходило на самом деле (в тот момент, когда мы это переживали), вместо того чтобы предаваться сладостным воспоминаниям, окутанным дымкой воображения.

Похожие книги из библиотеки