4. О так называемых «основных законах логики»
В XIX веке получила широкое распространение концепция «расширенной» логики. Ее сторонники резко сдвинули центр тяжести логических исследований с изучения правильных способов рассуждения на разработку проблем теории познания, причинности, вероятностного рассуждения и т. д. В логику были введены темы, интересные и важные сами по себе, но не имеющие к ней прямого отношения. Собственно логическая проблематика отошла на задний план. Вытеснившие ее методологические проблемы трактовались, как правило, упрощенно, без учета динамики научного познания.
Характерным примером такой «расширенной» трактовки была «Логика» английского логика Д. Милля. Еще при жизни автора эта книга выдержала восемь изданий, не без интереса она читается и сейчас. Общая ее направленность хорошо видна из полного ее названия: «Система логики рациональной и индуктивной, в связи с принципами очевидности и методами научного познания».
С развитием математической логики это направление в логике, путающее ее с поверхностно понятой методологией и пронизанное психологизмом, постепенно захирело.
Одним из отголосков идей «расширенной» логики является, в частности, разговор о так называемых «основных» законах мышления, или «основных» законах логики.
Согласно этой «широкой» трактовке логики основные законы — это наиболее очевидные из всех утверждений логики, являющиеся чем-то вроде аксиом этой науки. Они образуют как бы фундамент логики, на который опирается все ее здание. Сами же они ниоткуда не выводимы, да и не требуют никакой опоры в силу своей исключительной очевидности.
Под это до крайности расплывчатое понятие основных законов можно было подвести самые разнородные идеи. Обычно к таким законам относили закон противоречия, закон исключенного третьего и закон тождества. Нередко к ним добавляли еще закон достаточного основания и принцип «обо всем и ни об одном».
Согласно последнему принципу сказанное обо всех предметах какого-то рода верно и о некоторых из них, и о каждом в отдельности; неприложимое ко всем предметам неверно также в отношении некоторых и отдельных из них.
Действительно, это так. Но совершенно непонятно, какое отношение имеет эта истина к основаниям логики. В современной логике это один из бесконечного множества ее законов.
Закон достаточного основания вообще не является принципом логики — ни основным, ни второстепенным. Он требует, чтобы ничто не принималось просто так, на веру. В случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Разумеется, это никакой не закон логики. Скорее всего, это некоторый методологический принцип, не особенно ясный, но в общем небесполезный.
Закон тождества, как он толковался в «расширенной» логике, тоже имел только отдаленное сходство с соответствующим логическим законом. Говорилось, что в процессе рассуждения значения понятий и утверждений не следует изменять. Они должны оставаться тождественными самим себе, иначе свойства одного объекта незаметно окажутся приписанными совершенно другому. Чтобы этого не случилось, надо выделять обсуждаемые объекты по достаточно устойчивым признакам.
Требование не изменять и не подменять значения в ходе рассуждения является, конечно, совершенно справедливым. Но столь же очевидно, что оно не относится к законам логики. Совет выделять объекты по существенным признакам только общее пожелание, которое редко когда удается выполнить.
Что касается законов противоречия и исключенного третьего, то и они в рамках «расширенной» логики приобретали ярко выраженный методологический уклон. Первый из этих законов обычно превращался в запрещение говорить одновременно «да» и «нет», утверждать и отрицать одно и то же об одном и том же предмете, рассматриваемом в одном и том же отношении. Второй подменялся требованием, чтобы решение каждого вопроса доводилось до полной определенности. Анализ следует считать завершенным только тогда, когда установлена истинность либо рассматриваемого положения, либо его отрицания.
Это — полезные советы, но никакие не законы логики.
В итоге можно сказать, что рассуждения «расширенной» логики об основных законах мышления затемняют и запутывают проблему логических законов.
Как ясно показала современная логика, законов логики бесконечное множество. Деление их на основные и неосновные лишены ясных оснований.
Несостоятельна также подмена логических законов расплывчатыми методологическими советами. Никакого фундамента в виде короткого перечня основополагающих принципов у науки логики нет. В этом она не отличается от всех других научных дисциплин.
«Основных принципов», из которых выводилось бы или на которые опиралось бы все остальное содержание, нет ни у математики, ни у психологии, ни у любой иной науки. Иногда, правда, говорят о таких принципах или о фундаменте какой-то отрасли знания. В прошлом термин «основные принципы» нередко фигурировал в названиях научных книг. Но все это не должно пониматься буквально и прямолинейно.
Удивительно, что разговор об «основных принципах» логики иногда возникает даже в наше время.
Есть еще один предрассудок, культивировавшийся «расширенной» логикой и доживший до наших дней. Это обсуждение законов логики в полном отрыве их от всех иных ее важных тем и понятий и даже в изоляции их друг от друга.
При чтении старых книг по логике постепенно складывается впечатление разрозненности, необязательности и не связанности рассматриваемых в них тем. Если удались из старого учебника логики, скажем, раздел о законе исключенного третьего, на трактовке других законов это не скажется. Можно вообще устранить из такого учебника всякое упоминание об основных законах. И при этом все оставшееся не нужно будет даже перефразировать.
Логические законы интересны, конечно, и сами по себе. Но если они действительно являются важными элементами механизма мышления — а это, несомненно, так, — они должны быть неразрывно связаны с другими элементами этого механизма. И прежде всего с центральным понятием логики — понятием логического следования, и значит, с понятием доказательства.
Современная логика устанавливает такую связь. Доказать утверждение — значит показать, что оно является логическим следствием других утверждений, истинность которых уже установлена. Заключение логически следует из принятых посылок, если оно связано с ними логическим законом.
Без логического закона нет логического следования и нет самого доказательства.