Микробы в самых неожиданных местах
Мы перечислили малые микробиомы, которые удалось распознать еще до наступления эпохи ДНК-анализа. Скудная и туманная картина известного нам микробного населения человека в свете новых технологий прояснилась. Однако эти технологии дали нам и многое другое: позволили обнаруживать следовые количества микробов для популяций с низкой «плотностью населения» или же для тех видов, которые трудно вырастить в культуре. В результате ученым удалось выявить жизнь в таких уголках нашего тела, которые раньше считались стерильными (например, в области женской груди или плаценты; подробнее об этом – в главе 6). А теперь, дабы закончить наш первый беглый обзор, остановимся на недавних открытиях, касающихся двух видов органов с собственными микробиомами – легких и глаз.
Вполне очевидно, что наши легкие открыты для воздействия окружающего мира. Можно почувствовать, как воздух проходит через ноздри при вдохе и выходит из них при выдохе. Однако в медицинских учебниках до сих пор утверждается, что здоровые легкие стерильны.
Микроанатомия и биохимия дыхательных путей и легких действительно, казалось бы, хорошо приспособлены для того, чтобы удерживать микробиоту в верхней части респираторного тракта (выше гортани), которая неизбежно подвергается воздействию постоянного потока микроскопических пришельцев. Воздух, которым мы дышим, обычно содержит от 100 тысяч до миллиона бактерий на кубический метр.
Глотка рефлекторно сжимается, когда ощущает попадание чужеродного материала, тем самым помогая нам не задохнуться. В дыхательной системе существуют и более хитроумные барьеры, препятствующие проникновению микроорганизмов, и механизмы избавления от них. Похоже, в отличие от кишечника, легким вообще не нужны бактерии, так что они предпринимают всевозможные усилия, чтобы не пускать их к себе. Особая слизь, становясь флегмой (мокротой), захватывает все, что в нее попадает, – будь то бактерии, пыль или пыльца растений; ритмично движущиеся реснички дыхательной системы выметают флегму из легких в горло, а затем она сплевывается либо проглатывается.
Такому механическому выметанию сопутствует действие целого ряда антибактериальных агентов – скажем, фермента лизоцима, в больших количествах присутствующего в слизи и слюне, в иммунных клетках, которые стараются не допустить в бесконечно ветвящийся лабиринт внутренней части наших легких микроорганизмы, находящиеся в воздухе, и те, что обитают во рту и в носу. Поэтому, решили врачи, такие системы защиты обычно обеспечивают не осложненный никаким микробным влиянием обмен кислородом и углекислым газом в капиллярах, снабжающих кровью самые тонкие дыхательные пути в глубине легких.
Считалось, что если микробам все-таки удалось колонизировать легкие, это неизбежно сигнализирует о какой-то болезни – бронхите (вирусном или бактериальном заражении бронхов – крупных ветвей «системы газоснабжения» легких) или пневмонии. (Диагноз «пневмония» стоит на многих свидетельствах о смерти, выписываемых в домах престарелых. Она напоминает бронхит, но часто оказывается более серьезной: бактериальная или вирусная инфекция вызывает воспалительную реакцию. Если эта реакция не помогает избавиться от инфекции, альвеолы на концах последних, самых крошечных веточках легких забиваются отмершими клетками и жидкостью, что мешает кислородному обмену.)
Однако современные микробиомные исследования разрушили и этот миф. В респираторном тракте имеется микробное население, характерное только для него (во всяком случае, нам сейчас так кажется). Эту зону изучать не так легко, как другие. Верхняя часть респираторного тракта (рот, нос, горло) обладает собственной микрофлорой, образцы которой проще отбирать, чем пробы из нижней части тракта (из легких как таковых). Идея о том, что в легких бактерий нет, укоренилась в сознании ученых столь прочно, что при первом картировании микробного населения человека в рамках проекта «Микробиом человека» (под эгидой американских Национальных институтов здравоохранения) легкие вообще не учитывались.
Тем, кто пытался восполнить этот пробел, пришлось нелегко. Отбор проб здесь требует бронхоскопии: специальная трубка пропускается в нос или в горло. Обычно добровольцы не соглашаются на повторную процедуру. Большинство исследований опирается на данные, полученные от немногочисленных участников, у каждого из которых пробу отбирали всего один раз. В образцах, которые все-таки удается получить, могут содержаться примеси микробных видов, обитающих в носу и во рту, в пищеварительных соках, даже в биопленках, покрывающих внутреннюю поверхность гибких пластиковых эндотрахеальных трубок, которые применяют, чтобы добраться до легких. Самый надежный способ избежать всего этого – брать пробы непосредственно из легких в процессе трансплантации, но тогда придется довольствоваться лишь больными легкими, поскольку материал от здорового донора нужно срочно использовать по прямому назначению; тут уж не до анализа. Такого рода исследования невозможно повторять регулярно. Однако в ходе одной такой работы все-таки удалось выяснить, что бактериальные популяции различны в разных областях легкого. Можно применять и менее громоздкие методики, однако они достаточно трудоемки, поскольку требуют, например, вымывания образцов из легких или вставки крошечных щеточек в дыхательные пути. Поэтому большинство исследований пока опирается на образцы, полученные у больных. Диапазон заболеваний тут весьма широк: от муковисцидоза, при котором легочная инфекция является постоянной угрозой, до СПИДа и хронической обструктивной болезни легких, которой страдают многие курильщики.
На данный момент, впрочем, можно считать почти доказанным, что здоровые легкие и в самом деле обычно населены определенными видами бактерий, которые непросто вырастить в культуре, но которые можно идентифицировать при помощи секвенирования 16S рРНК или других современных методик. Однако не так-то легко переубедить людей в том, что все микробы – злокозненные захватчики, несущие болезнь. Когда выяснилось, что в здоровых легких постоянно живут свои бактерии, сразу же посыпались предположения: мол, такие результаты получены из-за попадания в пробу бактерий изо рта и из носа, где их наверняка полным-полно. Но исследования, проводимые при самом тщательном контроле, дали надежные и воспроизводимые результаты, уже не позволяющие усомниться в реальности получаемой картины. Да, микробиота нормальных легких относительно скудна и проста, но здоровые легкие несвободны от бактерий.
Относительная простота микробиоты легких побудила некоторых исследователей задуматься о возможных преимуществах подхода, при котором микробиом каждого участка тела рассматривается как отдельная экосистема. Этот подход часто предлагают применять для изучения микробиомов, хоть и не всегда понятно, как же его использовать[49]. Легко заявить, что все триллионы микробов толстой кишки – одна экосистема, но ее сложность вряд ли поможет нам выяснить, что же происходит в этой микрофлоре.
Роберт Диксон, работающий на медицинском факультете Мичиганского университета, предлагает три «экологических» пути исследований легочного микробиома. Можно представить себе легкие как место колонизации бродячими микробами. Лучшая модель здесь – теория островной биогеографии, разработанная в 1960-х годах для анализа популяций, живущих на клочках суши посреди океана, в отдалении от материков. Самый простой случай – новый остров, возникший после извержения вулкана. Вначале жизни на нем нет, но постепенно он заселяется животными-колонистами, которые к нему плывут, прилетают или даже приносятся на плотах или бревнах. Количество видов, попадающих на остров, зависит от его размеров и от того, какое расстояние отделяет его от ближайшей области суши со стабильной экосистемой. Количество выживших видов также зависит от размера острова, но здесь играют роль и другие локальные факторы. Модели, разработанные для учета всех таких факторов, можно применить и к легким. Эту мысль высказали Диксон и соавторы в статье 2014 года[50].
«Расстояние» здесь – то, насколько глубоко в легкие вы проникаете, то есть насколько далеко вы оказываетесь от источника микробов. В числе других факторов – размеры бактериальной популяции рта и носа, а также эффективность работы ресничек и иммунных клеток. По мнению Диксона и его коллег, такая модель поможет оценивать степень видового разнообразия микробов, присутствующих в легких, но не общую численность микробного населения. Эта численность зависит от скорости воспроизводства бактерии, нашедшей место для колонизации.
Кроме того, модель помогает отказаться от идеи о разделении респираторного тракта на верхнюю и нижнюю части (верхние и нижние дыхательные пути). На самом деле в нем можно выделить множество субрегионов со своими локальными условиями, способными влиять на то, кто может там обитать. Внутренняя поверхность легких (ее общая площадь примерно в 30 раз больше суммарной площади нашей кожи) – область, участки которой отличаются по целому ряду параметров, в том числе по температуре, содержанию кислорода, кислотности, структуре клеток легочного эпителия. Если вы бродячая бактерия, все это для вас имеет значение. Конкретные эффекты еще предстоит исследовать, однако, по словам Диксона, «постоянная взаимосвязь между параметрами среды и типами микробов может стать убедительным доводом в пользу того, что бактерии не просто присутствуют в нижних дыхательных путях, но и активно размножаются там, а кроме того, подвергаются действию факторов отбора».
Экологический подход меняет наши представления о том, что считать болезнью, а что – нормой. Если в здоровых легких имеются заметные популяции микробов, следует отказаться от упрощенческого взгляда на легочные болезни (особенно на пневмонию – убийцу миллионов) как на результат негативного воздействия микроскопических захватчиков.
Диксон отмечает: пневмония – результат разрушения комплексной экосистемы, которая зачастую может адаптироваться к потенциально инфекционному виду микробов. Микробиомные исследования все чаще показывают, что вид, казавшийся причиной того или иного конкретного случая пневмонии, – лишь один из многих присутствующих видов, причем каждый из них постоянно сталкивается с совместным действием катализаторов и ингибиторов роста. Виды, которые для некоторых людей оказываются патогенными и вызывают острые инфекционные заболевания, у других, как выясняется, тихо обитают в легочной микробиоте, не давая никаких симптомов инфекции.
Как заключает ученый, «микробная экосистема легких – комплексная адаптивная система, где пневмония может возникать как некое разрушительное явление». Звучит впечатляюще, но есть ли тут связь с главным – с тем, как нужно диагностировать, лечить или даже предотвращать эту болезнь, распространенную по всему миру? Диксон полагает, что связь есть. Его гипотеза призывает сосредоточить внимание на особенностях различных этапов пневмонии.
Раньше считалось, что пневмония поражает человека, когда большое количество инфекционных бактерий попадает в стерильную ткань легких и нарушает нормальную работу ее систем защиты. Но если в легких уже имеется набор бактериальных видов, которые взаимодействуют с клетками организма-хозяина и друг с другом, то такая комплексная система может подвергаться существенным изменениям, скажем, из-за внезапного всплеска инфекции, вызванного относительно малым сдвигом равновесий, поддерживающих нужный состав бактериальной популяции.
Возможно, этим и объясняется одна из самых неприятных особенностей бактериальной пневмонии – то, что она развивается скоротечно, за несколько дней или даже часов. Как такое может происходить? Диксон предполагает наличие множества «циклов обратной связи», способных давать резкий популяционный сдвиг у очень большого количества представителей одного вида. Допустим, избыточное размножение вредоносного вида сдерживают ограниченное количество питательных веществ и воспалительная реакция невысокой интенсивности. Если интенсивность воспаления возрастет, результатом может стать повреждение клеток, и из тканей, где они находятся, начнет вытекать жидкость, насыщенная питательными веществами, тем самым способствуя развитию бактерий и дальнейшему воспалению, еще больше увеличивающему поступление питательных веществ. Происходит взрывной рост популяции патогена (что-то подобное бывает с океанскими водорослями). С этим механизмом мы еще встретимся в других частях тела.
Это лишь одна идея, но она показывает, как меняются представления о заболевании, когда мы уже знаем о существовании микробиома здоровых легких. Есть и другие варианты. Так, при заражении резко усиливается выработка слизи, но эта слизь не только действует как очиститель, но и может служить пищей опасным бактериям.
Осознание новой легочной экологии позволяет осмыслить некоторые давно известные клинические наблюдения. Пациенты, подключенные к системе искусственной вентиляции легких (лишь благодаря этому они продолжают жить), рискуют заработать пневмонию, и риск выше, если им вводили антибиотики. Этот факт трудно объяснить, если считать, что в нормальном состоянии легкие стерильны.
Похоже, важную роль нормальной легочной микробиоты подтверждают первые исследования влияния пробиотиков (бактерий, считавшихся здоровыми) на больных, подключенных к системе искусственной вентиляции. Проведенное методом случайной выборки обследование 146 пациентов показало, что у группы, получавшей пробиотики, пневмония возникала вдвое реже[51]. В данном случае пациенты просто глотали эти пробиотики (введение их непосредственно в легкие до сих пор считается чересчур смелым методом), но некоторые пробиотические микробы, очевидно, все-таки пробирались в респираторную систему по той же причине, по которой возник и сам легочный микробиом, – все, что вы глотаете, может попасть и в легкие.