Молекулярный промискуитет

«Маленькая молекула с впечатляющей эволюционной историей и хорошим ч/ю ищет партнера. При необходимости может служить источником энергии.»

Нет, молекулы не помещают объявления в газетных разделах знакомств, но некоторые из них все-таки заводят интрижки, устраивая краткие спаривания с целым рядом других. Эти альянсы имеют далекоидущие последствия. Эволюция всегда рада воспользоваться всем, что подвернется под руку; если какая-то небольшая и довольно стабильная молекула долго крутится в системе, эволюция обязательно находит ей новые области применения.

Частично поэтому роль кишечных бактерий далеко не исчерпывается помощью при пищеварении. Они вырабатывают множество малых молекул, которые воспринимаются как сигналы многими нашими клетками, тканями и органами. В результате создаются сети почти неисчерпаемой сложности. Полная карта, отражающая все взаимодействия, походила бы на схему Интернета. Заполучив такую карту, ученые наверняка открыли бы какие-нибудь общие принципы и свойства.

Во всяком случае ясно, что один из ключевых уровней взаимодействия здесь – молекулярный. А теперь я попробую дать вам, читатель, хоть какое-то представление о том, как набор крошечных организмов, обитающих у нас в кишечнике, может влиять на гораздо более крупную систему – наш организм. Для этого мы рассмотрим поведение всего одной молекулы.

Знакомьтесь: масляная кислота. Вот ее структурная формула (как нетрудно догадаться, буквы обозначают элементы, в данном случае углерод, водород, кислород, а линии – их связи).

Молекулярный промискуитет

— AD —

Вещество относится к классу соединений, именуемых короткоцепочечными насыщенными жирными кислотами. Кислотная часть – карбоксильная группа – СООН на конце – неизменно присутствует у всех представителей этого класса. Атом углерода склонен образовывать 4 связи, что является ключевой особенностью, позволяющей таким атомам соединяться в цепочки, создавая множество веществ, что делает углерод одним из главнейших элементов живого. Используя четвертую связь группы – СООН для соединения с атомом водорода, вы получите HCOOH, муравьиную кислоту, раздражающее вещество, которое имеется в жалах насекомых. Цепочка из двух углеродов даст вам более благодушную уксусную кислоту, бутылочка которой наверняка есть у вас на кухне. Легко видеть, что в масляной кислоте имеется цепочка из 4 углеродных атомов. Такие цепочки могут быть довольно длинными (скажем, в молекуле церотиновой кислоты содержится цепь из 26 атомов углерода); они могут обладать множеством свойств, на которых здесь незачем останавливаться. Вещества с короткими цепочками – не очень «жирные»; масляная кислота, как и ее родичи с небольшим количеством атомов углерода в молекуле, растворима в воде. Она является кислотой, поскольку водород в ее ОН-группе может отщепляться в виде самой простого химического объекта – положительно заряженного иона водорода (иными словами, в виде протона). Атом кислорода, от которого он отщепился, в результате приобретает отрицательный заряд. Получается бутират-ион, дающий всевозможные бутираты.

Бутираты выделяют многие кишечные бактерии. На первый взгляд может показаться, что причина здесь та же, которую мы уже излагали выше. Выработка короткоцепочечных жирных кислот позволяет нам гораздо эффективнее использовать то, что мы едим. Данные, полученные при изучении безмикробных мышей, как будто подтверждают: бактерии делают именно это. Грызуны, лишенные естественных бактерий, обычно вынуждены есть на 10 % больше, чем мыши с нормальным микробиомом, чтобы поддерживать такую же массу тела. Это наблюдение позволяет по-новому взглянуть на пищевые волокна, к потреблению которых нас вечно призывают. Сложные углеводы, главный компонент клетчатки, обычно попадают в толстую кишку непереваренными. Мы привыкли думать, что они полезны, ибо каким-то образом помогают толстой кишке работать более гладко, увеличивая объем ее содержимого. Питаясь лишь такой едой, где нет клетчатки, вы рискуете заработать запор, а в конечном счете – рак толстой кишки.

Выяснятся, однако, что судьба клетчатки куда интереснее: это далеко не только добавка к фекалиям, доводящая их до необходимого объема[61]. Если в толстой кишке присутствуют нужные бактерии, крупные молекулы расщепляются при помощи бактериальных ферментов, давая короткоцепочечные насыщенные жирные кислоты. А те в свою очередь могут использоваться нашими собственными клетками для выработки энергии. Ацетат (обычно его производится втрое больше, чем бутирата) попадает в кровь, а потом используется мышцами и печенью, подобно глюкозе. Часть бутирата также абсорбируется из толстой кишки и применяется в печени. Однако свою важную метаболическую роль он начинает играть уже в толстой кишке, где быстро делятся эпителиальные клетки, жадные до бутирата. Не получая достаточного его количества, они переваривают собственное содержимое.

Прелестная, изящная схема: бактерии представляют собой удобный источник энергии для близлежащих человеческих клеток, которым эта энергия так нужна. Однако молекула бутирата, избежавшая съедения клетками человеческого тела, может проделывать множество других вещей. Похоже, существуют рецепторы, способные повсюду распознавать ее – по форме и по распределению электрического заряда между ее атомами. Сколько таких рецепторов? Вероятно, пока мы знаем не все, но давайте остановимся хотя бы на некоторых. Молекулярные взаимодействия в живых системах зачастую мимолетны. Представьте себе молекулу в жидкой среде, окруженную другими, постоянно толкаемую, да при этом еще и ее собственные атомы «вибрируют» или даже вращаются вокруг межатомных связей[62]. Она может совершить краткое «рукопожатие» с каким-то рецептором или участком идентификации, но затем ее выталкивают обратно в поток. Если бы оказавшемуся в толстой кишке бутират-иону вручали список «двадцати действий, которые необходимо соверщить, прежде чем вас метаболизируют», этот список мог бы начинаться следующим образом.

Найдите рецептор, сопряженный с G-белком, и соединитесь с этим рецептором. Речь идет об обширном семействе рецепторов, расположенных на поверхности клеток и проделывающих то, на что указывает их название; находясь на клеточной мембране, они связывают малые молекулы, имеющиеся во внеклеточном пространстве. Это небольшое изменение заставляет рецептор изменить форму. Затем он активирует какой-то G-белок (G-белки – один из классов белковых молекул), который после этого передает сигнал внутрь клетки, тем самым вызывая целый ряд эффектов.

Многие сигнальные системы клеток работают таким образом. В наших тканях существуют тысячи различных рецепторов, сопряженных с G-белком, как и других рецепторов из того же семейства, действующих посредством разных агентов передачи сигнала. Поэтому не удивительно, что некоторые из них связывают бутират (и ацетат). Их так много, что им присваивают названия с номерами. В данном случае первый рецептор, который встречает наша молекула, именуется Gpr43. Его форма предназначена для связывания трех наиболее распространенных короткоцепочечных насыщенных жирных кислот. Он помогает приглушать воспалительные реакции.

Затем наша молекула бутирата слезает с этого рецептора и попадает на другой – Gpr109a. Он игнорирует иные короткоцепочечные насыщенные жирные кислоты и захватывает лишь бутират (хотя, поскольку клеточная биология вообще полна скрещивающихся путей, он способен также откликаться на присутствие витамина B3 – ниацина, еще одного продукта жизнедеятельности кишечных бактерий). Этот рецептор после активации выполняет в кишечнике сходную противовоспалительную роль. Похоже, он также снижает вероятность развития рака толстой кишки. И вот пример типичной сложной взаимосвязи, помогающей клеточным сообществам самоорганизовываться: выработка этого рецептора в толстой кишке резко усиливается в присутствии кишечных бактерий. Что это – еще один эффект бутирата? Мы пока не знаем.

Но и это лишь краткая встреча. Наша универсальная молекула бутирата плывет дальше, чтобы соединиться с рецептором Gpr41, который подает клеткам сигнал усилить выработку лептина – гормона, играющего весьма важную роль в контроле аппетита, метаболизма жиров и их накопления. И наконец, бутират прочно связывается с рецептором еще одного типа – транспортным белком, который переносит бутират внутрь клетки нашего тела (в данном случае – клетки эпителия толстой кишки). Оказавшись там, молекула высвобождается и может взаимодействовать с новыми партнерами. Так, одна из хорошо изученных функций внутриклеточного бутирата – ингибирование фермента, который ускоряет отщепление ацетильных групп от гистонов – белков, участвующих в упаковке нитей ДНК. Здесь следует отметить, что повышенная активность данного фермента – одна из характерных особенностей клеток злокачественной опухоли толстой кишки.

Таков лишь один из множества возможных конечных пунктов этого молекулярного путешествия. Если клетка, переносящая в себе бутират, окажется Т-лимфоцитом, присутствие бутирата может побудить ее стать более специализированной иммунной клеткой. Существуют транспортные агенты, переправляющие бутират через эпителий кишечника, чтобы это вещество попало в кровь. А уж вместе с кровью бутират может направиться практически куда угодно. По мнению некоторых специалистов, похожие транспортные агенты могут нести короткоцепочечные насыщенные жирные кислоты в мозг и нервные клетки. Возможно, существует даже некая связь между такой доставкой и тем фактом, что опыты на мышах как будто показывают – введение значительных доз бутирата может оказывать антидепрессивное действие. (К этой находке мы еще вернемся в главе 9.)

Но давайте закончим наше воображаемое путешествие именно здесь. Оно позволяет представить себе лишь некоторые детали, известные нам о бутирате и о том, что он способен делать. Конечно, пока мы знаем далеко не все. Однако этот беглый рассказ позволяет представить себе и другие похожие истории о молекулах, каждая разновидность которых успела сыграть множество ролей с тех самых пор, как в ходе эволюции начали складываться пути координации различных систем нашего организма (и организма наших эволюционных предшественников)[63].

Ученые пытаются столь же детально изучить другие подобные истории, каждая из которых напоминает о тонко настроенном взаимодействии и тщательной координации, необходимых, когда речь идет об управлении организмом, состоящим из триллиона клеток. Переход же на уровень суперорганизма подразумевает, что система в целом включает триллионы других клеток, которые действуют в какой-то степени независимо и интересы которых не всегда полностью совпадают с интересами «родных» клеток нашего тела.

Из истории о бутирате можно сделать еще два вывода. Обычно ни одна малая молекула не ограничивается выполнением лишь одной функции. Чаще всего молекула вовлечена в деятельность разных систем, причем ее функции подчас кажутся в чем-то противоречивыми. Одна молекула может участвовать в тонкой настройке многих систем организма. Более того, сети передачи сигнала, чью деятельность она модулирует, переплетаются со многими другими; ко всем этим взаимодействиям следует подходить весьма тщательно, если мы хотим получить сколько-нибудь ясное представление об их возможных конечных результатах. Все эффекты, которые оказывает моя гипотетическая гиперактивная молекула бутирата, зависят от конкретных клеточных обстоятельств. Нужно иметь все это в виду, пытаясь разобраться, означают ли новые открытия касательно микробиома именно то, о чем заявляют их авторы и пропагандисты.

А теперь следует вернуться на более высокие уровни микробиома – к экосистемам и комплексным взаимодействиям. Но пока мы еще здесь, внизу, играем в рьяных редукционистов и пытаемся изучать объекты по одному, давайте обратимся к очередной истории с единственным главным героем. Речь у нас пойдет не о молекуле, а о некоей бактерии.

Похожие книги из библиотеки