Краткий урок генетики
Как вы, может быть, помните из школьных уроков биологии, ДНК – длинная цепь, состоящая из двух параллельных лент, которые слегка свиты и формируют двойную спираль. «Хребет» ДНК образован перемежающимися соединенными между собой молекулами сахаров и фосфатов (рис. 8.1).
Вдоль лент в точной последовательности располагаются содержащие азот основания, каждое из которых прикреплено к дезоксирибозе. Их четыре: аденин (A), тимин (T), гуанин (G) и цитозин (C). Они обращены внутрь молекулы к противолежащим основаниям и связывают ленты друг с другом. Аденин и тимин имеют химическое сродство друг с другом и образуют пары оснований; то же касается гуанина и цитозина.
Молекулы ДНК невообразимо длинны, и последовательности оснований уникальны у всех без исключения людей, когда-либо живших на нашей планете. Поскольку основания – как буквы алфавита, из них складываются «слова», образующие огромный массив информации{72}.
Уникальная цепочка ДНК разделена и упакована в 23 пары хромосом, расположенных в ядрах всех 100 трлн клеток нашего организма (каждая из которых так мала, что уместилась бы на кончике иглы). Клетки используют ДНК как план работы. Основания пар хромосом (всего около 3 млрд) сгруппированы в гены (их около 25 тыс.). Ген может иметь от 100 до нескольких миллионов оснований и управляет образованием уникального белка.
Однако гены транслируются в белок не непосредственно, а через промежуточное образование – рибонуклеиновые кислоты (РНК), последовательности оснований, отражающие ленту ДНК (рис. 8.2).
Процесс экспрессии ДНК с образованием активного белка (например, фермента)На заре генетических исследований ученые верили в гипотезу «один ген – один белок»: каждый ген отвечает за экспрессию единственного белка. Если есть 25 тыс. генов, то должно быть 25 тыс. белков. Однако поздние работы ясно показали, что гипотеза слишком упрощена. В частности, для создания одного белка может требоваться более одного гена, так как некоторые белки состоят из нескольких цепочек аминокислот, каждая из которых создается на основе своего гена. Число возможных белков и их комбинаций невозможно оценить, и уже здесь сложность выходит далеко за пределы возможностей человеческого разума.
Но есть и другая загвоздка. Хотя все клетки организма содержат идентичный генетический шаблон, они выполняют разные функции. Клетки печени по форме и функции очень отличаются от нейронов и клеток внутренней поверхности кишечника. Их структурные и функциональные различия зависят исключительно от того, какой сегмент ДНК подвергся экспрессии в данной клетке. Процесс выбора из 3 млрд оснований прекрасно показывает природу в работе.
Сравнительно короткие сегменты последовательности ДНК – гены – транскрибируются в последовательности РНК, которые транслируются в последовательности аминокислот, используемых для синтеза белков. Эти белки обеспечивают работу клетки, будучи ферментами, гормонами и структурными единицами. ДНК выполняет свою миссию именно благодаря активности белков.
Это проявление предназначения – экспрессия генов – осуществляется с помощью ряда ужасно сложных, но очень упорядоченных процессов. Чтобы прояснить и понять их, ученые их упрощают, рассматривая дискретные с виду стадии или события, происходящие одно за другим. Такое упрощение полезно, так как позволяет изучать и визуализировать подробности каждого этапа, но не совсем достоверно. В реальности все очень взаимосвязано и сливается в практически непрерывный поток сопряженных действий.
На каждый этап этого процесса могут влиять биохимия организма, диета, физическая активность, лекарственные средства, настроение и практически все переменные, какие можно представить. И не только. Так называемые стадии экспрессии воздействуют друг на друга, отправляя информацию по бесконечно сложным петлям обратной связи. Потоки событий многообразно связаны друг с другом на всех сложнейших стадиях процесса, как мы видели в главе 7 на примере ферментов (а это один из видов белков). Кроме того, каждое изменение активности может иметь несколько причин. Например, синтез белка колеблется в соответствии с потребностью в нем в каждый момент времени. Если какого-то белка достаточно, его образование замедляется. Но замедление скорости синтеза может контролироваться множеством способов: например, изменяются скорость транскрипции ДНК в РНК или скорость синтеза белка из этого РНК.
С этой системой мы сейчас возимся, как с рукотворной машиной. Да, мы картировали геном человека{73}. Но картирование – первый шаг. Мы, если захотим, можем дать генам загадочные названия, но это не значит, что мы тут же узнаем их значение и то, как из них возникают личность, предпочтения, склонности – или заболевания… при условии, что это вообще возможно.