Редукционистские доказательства второго типа: исследования «случай-контроль»

Другой широко распространенный дизайн, который ученые-редукционисты считают менее специфичным, чем проспективный, – исследования «случай-контроль». Людей с определенным заболеванием сравнивают с лицами того же пола, возраста и т. д., у которых этого заболевания нет. Исследователи смотрят на различия в образе жизни между группами, которые могут привести к разным результатам. С помощью таких экспериментов обычно тестируют воздействия, которые невозможно или неэтично применять на людях: диету, образ жизни, влияние токсинов. Вы не заставите половину участников питаться только в McDonald’s, но можно найти людей, которые выбрали такую диету сами, и посмотреть, что с ними произойдет.

Исследования «случай-контроль» могут быть ретроспективными, когда для объяснения исхода болезни используют предыдущие наблюдения, или проспективными, если берутся группы с разным образом жизни и диетой и выясняется, что с ними произойдет. В обоих случаях участников распределяют по группам не рандомизированно, поэтому невозможно доказать, что различия вызвали конкретные исходы. Проблема в том, что люди, схожие по одной характеристике, вероятно, будут похожи по многим другим. Невозможно сказать, какая из них была фактором, ведущим к разным результатам. Чтобы устранить проблему, обычно прибегают к ряду статистических процедур, именуемых «поправкой на вмешивающийся фактор».

Она работает следующим образом. Представьте, что вы изучаете связь между раком молочной железы и потреблением жиров. Вы берете две группы: в первую входят женщины с раком молочной железы (случаи), а во вторую – без этого диагноза (контроль). Вы задаете им вопросы о пищевом поведении и пытаетесь понять, потребляют ли «случаи» больше жиров. Но есть проблема: у женщин с раком выше содержание жира в организме. Где здесь причина и где следствие? Пищевые жиры вызвали рак молочной железы? Или женщины, склонные к ожирению, более подвержены раку?

Чем больше вопросов мы себе задаем и чем больше взаимодействий допускаем, тем глубже тонем в кошмаре редукциониста. Может быть, женщины с раком и более высоким содержанием жира в организме генетически предрасположены и к тому и к другому, поэтому можно не выяснять, сколько жиров потребляют женщины без этой склонности? А может, есть еще какая-то переменная, о которой мы пока не знаем? Может, полные женщины меньше тренируются и чаще впадают в депрессию из-за предрассудков, и именно это ведет к раку молочной железы? Или они полнее из-за депрессии, заставляющей их больше есть и меньше заниматься спортом? Или меньше знают о здоровом питании, что иногда коррелирует с худшим медицинским обслуживанием, а оно соотносится с меньшим доходом, который связан с меньшей доступностью свежих овощей и фруктов, а та – с проживанием в районах с повышенной концентрацией средовых токсинов?

Чтобы устранить эту неопределенность, редукционисты используют статистику. Она помогает удержать все потенциальные источники засорения данных на постоянном уровне и устранять их последствия. Иными словами, они сравнивают маленькие сегменты каждой группы, в которых вмешивающиеся факторы практически одинаковы. Конечно, это возможно только для тех факторов, которые мы представляем и способны измерить. Поскольку ни у кого нет неограниченного времени и денег, всегда будут оставаться факторы, которые не нейтрализуются с помощью статистики.

Но чем больше ученые пытаются распутать сеть воздействий вокруг конкретного исхода для здоровья, тем менее полезными становятся «результаты». Допустим, в случае рака молочной железы мы сделали «поправку» на все влияния, которые можем представить, и остались две переменные: уровень ожирения и заболеваемость раком. Если мы заявим, что женщины с ожирением чаще болеют раком, рецепт профилактики сведется к совету «сбросить вес». Все, что поможет избавиться от пары килограммов, станет формой профилактики рака. Питательные коктейли вместо еды, низкоуглеводные диеты, голодания с лимонным соком и всевозможные безумства будут привязаны к пользе для здоровья независимо от механизма связи между ожирением и болезнью. А теперь представьте, что оба состояния – зависимые переменные диеты с высоким содержанием переработанных животных продуктов и недостатком цельной растительной пищи. Для многих женщин, сидящих на диете, чтобы «любой ценой похудеть и избежать рака», это обернется выбором продуктов, которые повысят, а не снизят риск.

Это как заметить, что счастливые люди чаще улыбаются, и изобрести прибор, растягивающий губы для лечения депрессии. Безусловно, улыбка – признак радости. Несомненно, между ними существует корреляция. Конечно, если больше улыбаться, можно повлиять на настроение. Но выделение одной улыбки и игнорирование всех остальных факторов счастья и депрессии нелепо.

Думаете, эти примеры невероятны? В главе 11, посвященной шумихе вокруг пищевых добавок, мы поговорим о последствиях узости редукционистских исследований для реального мира. Там статистические поправки используются, чтобы доказать, что определенные питательные вещества – не только маркёры хорошего здоровья, но и его причина. При этом игнорируется множество факторов, окружающих эти нутриенты, как будто они не важны или вообще не существуют. Результат таких просчетов – не просто пустая трата денег покупателями витаминов; иногда это ведет к серьезным заболеваниям и даже преждевременной смерти.

Похожие книги из библиотеки