10.1 K

Медицинская экология

2.6. Природный радиационный фон. Влияние радиации на организм человека. Нормы радиационной безопасности

2.6. Природный радиационный фон. Влияние радиации на организм человека. Нормы радиационной безопасности

На фоне значительного обострения экологической ситуации, связанного с индустриализацией и урбанизацией современного общества, а также с ростом народонаселения, проблема научной оценки влияния на природную среду и человека всех факторов, воздействующих на биосферу, приобретает исключительную актуальность. К числу таких факторов относится и ионизирующее излучение.

Радиация сопровождает человечество на протяжении всей его истории. А вот осознание наличия радиации и специфических эффектов от ее воздействия пришло к человеку сравнительно недавно – с момента открытия явления радиоактивности французским физиком А. Беккерелем в 1896 г.

Радиоактивность – самопроизвольное превращение ядер атомов одних элементов в другие, сопровождающееся испусканием ионизирующих излучений. Для характеристики радиоактивности используются единицы активности:

1) системная единица (в системе СИ) – беккерель (Бк), равная одному ядерному превращению в секунду;

2) несистемная (специальная) единица – кюри (Кu), равная 3,7 ? 1012 беккерелей.

Ионизирующее излучение – любое излучение, за исключением видимого света и ультрафиолетового излучения, взаимодействие которого со средой приводит к ее ионизации, то есть к образованию электрических зарядов разных знаков. Кроме ионизации, все виды излучений вызывают возбуждение атомов и молекул путем передачи им части энергии, недостаточной для ионизации.

Ионизирующее излучение подразделяют на электромагнитное и корпускулярное.

К электромагнитным относятся рентгеновские лучи, гамма-лучи радиоактивных элементов и тормозное излучение, испускаемое при изменении кинетической энергии заряженных частиц при прохождении через вещество. Эти разновидности излучений имеют ту же природу, что и видимый свет, радиоволны, но с меньшей длиной волны. Электромагнитные излучения не имеют массы покоя и заряда, а потому обладают наибольшей проникающей способностью. Пробег частиц излучений (фотонов) максимально сокращается в таких материалах, как свинец, что используется при конструировании защитных экранов.

Корпускулярное излучение – ионизирующее излучение, состоящее из частиц с массой покоя, отличной от нуля. Выделяют две их разновидности. Заряженные частицы: ?-частицы (электроны), протоны (ядра водорода), дейтроны (ядра тяжелого водорода – дейтерия), ?-частицы (ядра гелия), тяжелые ионы – ядра других элементов, ускоренные до больших энергий. При прохождении через вещество заряженная частица, теряя свою энергию, вызывает ионизацию и возбуждение атомов. К незаряженным частицам относятся нейроны, которые не взаимодействуют с электронной оболочкой атома, беспрепятственно проникают в глубь атомов, вступая в реакцию с ядрами. При этом испускаются ?-частицы и протоны. Протоны приобретают в среднем половину кинетической энергии нейтронов и вызывают на своем пути ионизацию. Плотность ионизации протонов велика, поэтому нейроны следует рассматривать как частицы, косвенно вызывающие очень плотную ионизацию. В веществах, содержащих много атомов водорода (вода, парафин, графит), нейроны быстро растрачивают свою энергию и замедляются, что используется в целях радиационной защиты.

Радиоактивные явления, происходящие в природе, называют естественной радиоактивностью; аналогичные процессы, происходящие в искусственно полученных веществах – искусственной радиоактивностью. Данные процессы участвуют в формировании радиационного фона (РФ). Под РФ принято понимать ионизирующее излучение от природных источников космического и земного происхождения, а также искусственных радионуклидов, рассеянных в биосфере в результате деятельности человека. РФ воздействует на все население земного шара, имея относительно постоянный характер.

Выделяют:

1) естественный (природный) радиационный фон (ЕРФ);

2) технологически измененный естественный радиационный фон (ТИЕРФ);

3) искусственный радиационный фон (ИРФ). Источники, формирующие природный фон, подразделяются на:

– внешние источники внеземного происхождения (космические излучения);

– внешние источники земного происхождения (радионуклиды земной коры, воды, воздуха);

– внутренние источники, то есть радионуклиды естественного происхождения, содержащиеся в организме (изотопы 40К и 14С; отложившиеся в костях радий и торий; радон, растворенный в тканях организма).

Технологически измененный радиационный фон представляет собой ионизирующее излучение от природных источников, изменяющихся в результате антропогенной деятельности – добыча полезных ископаемых; добыча, использование и выброс в окружающую среду продуктов сгорания органического топлива; изготовление и использование минеральных удобрений, строительных материалов, авиационные перелеты, курение.

Основной причиной радионуклидного загрязнения среды является хозяйственная деятельность человека, которая приводит к выносу на поверхность земли веществ с повышенным содержанием естественных радионуклидов и их концентрированию в конечных продуктах и отходах. Одним из основных поставщиков естественных радионуклидов в окружающую среду следует признать каменный уголь, который содержит калий-40; уран-238; торий-232 и продукты их распада. Из трех этапов (добыча угля, его применение, использование золы) к перераспределению радионуклидов из земной коры в биосферу в основном приводит сжигание угля. Население, проживающее вблизи угольных теплоэлектростанций, подвергается более интенсивному воздействию естественных радионуклидов за счет их вдыхания, внешнего облучения и поступления с водой и пищей. Учитывая, что главным способом применения угольной золы является ее использование для производства цемента и бетона, применение золы в строительстве приводит к увеличению доз облучения за счет внешнего облучения и вдыхания продуктов распада радона.

Искусственный радиационный фон – это излучения, представленные рассеянными в биосфере искусственными радионуклидами. Он формируется за счет: объектов атомного цикла; работы АЭС и АЭУ; использования рентгено-радиоизотопной диагностики и лечения; применения бытовых приборов; радиоактивных выпадений вследствие испытаний ядерного оружия (табл. 11).

Начиная с 1945 г., основным источником радиоактивных материалов во внешнюю среду и главным фактором облучения человека являлись ядерные взрывы. В связи с тем что ядерные испытания в атмосфере не проводились с 1980 г., не распавшиеся до настоящего времени продукты ядерных взрывов (углерод-14; водород-3; цезий-137; стронций-90) оставляют нынешнему и будущим поколениям лишь остаточную дозу, величина которой равна примерно 3 годовым нормам облучения от естественных источников. Важное медико-экологическое значение имеет ядерно-топливный цикл, включающий этапы добычи и переработки урановой руды, перевозку ядерных материалов и удаление радиоактивных отходов. На каждом из этапов цикла нельзя исключить попадания тех или иных количеств радионуклидов в окружающую среду. Особенно это касается ситуаций, связанных с нарушением технологического ритма АЭС или аварий, которые характерны для последних десятилетий.

Таблица 11

Основные источники облучения населения России и обусловленные ими эффективные эквивалентные дозы

(Нормы радиационной безопасности, 1999; Крисюк Э. [и др.], 1989)

2.6. Природный радиационный фон. Влияние радиации на организм человека. Нормы радиационной безопасности

— AD —

Источниками воздушного загрязнения, в основном за счет радона-222, являются урановые рудники и рудные «хвосты», вывозимые с предприятий. Одной из причин загрязнения окружающей среды являются отвалы пустой породы рудников, содержащие значительные количества долгоживущих радионуклидов. Они могут служить мощным дозообразующим факторов в случае, когда пустая порода используется в качестве наполнителя при строительстве жилых домов. Серьезную проблему, в основном для крупных промышленных центров, представляет загрязнение территорий изделиями с нанесенными на них светосоставами постоянного действия, содержащими соединение радия-226 («циферблат», стрелки и т. д.).

Существенно увеличивают дозы облучения населения радиационные аварии, особенно аварии на АЭС. Анализ последствий аварий, в том числе аварий на Чернобыльской АЭС, показал, что в основном на организм человека воздействует внешнее облучение за счет осевших на землю радионуклидов и употребление загрязненных продуктов питания. В ряде случаев, особенно после аварии, первостепенное значение может иметь вдыхание радионуклидов, находящихся во взвешенном состоянии в воздухе.

Принципиальное значение для проведения защитных мероприятий имеет изотопный состав и период полураспада радионуклидов, выброшенных в результате аварии во внешнюю среду и поступающих к человеку. В первый месяц после аварии существенным источником внешнего облучения являются короткоживущие гамма-излучающие радионуклиды: йод-132; барий-140; лантан-140; цезий-136; рутений-103; рутений-106. В течение нескольких лет источником внешнего гамма-облучения становится цезий-134, а нескольких десятков лет – цезий-137.

При поступлении радионуклидов с водой и пищей наиболее значительную дозу создают йод-131; цезий-134; цезий-137, основными поставщиками которых являются молоко и молочные продукты, зерновые, зелень, овощи и мясо.

Структуру ионизирующего облучения, получаемого населением за год, можно представить следующим образом:

1) 54 % – радон, содержащийся в жилищах или в атмосфере;

2) 14 % – медицинская радиология;

3) 11 % – излучение, получаемое человеком в результате вдыхания воздуха, потребления воды и пищи;

4) 8 % – горные породы и почвы;

5) 8 % – космические лучи;

6) 3 % – антропогенные источники;

7) 2 % – ядерные испытания.

Большую часть (до 98 %) облучения человек получает за счет природных источников излучения и при медицинском обследовании (см. табл. 11).

Как известно, для организма опасен не сам фон, а доза полученного облучения, так как именно она определяет количество образовавшихся ионов и, соответственно, неблагоприятные последствия для человека.

Итак, мерой ионизирующего излучения является доза. Выделяют следующие виды доз:

– экспозиционная доза(Х) – это доза рентгеновского или ?-излучения, характеризующаяся по ионизирующему эффекту в воздухе. Единицы измерения: системная (СИ) – кулон на килограмм (Кл/кг), внесистемная – рентген (Р) (1 Кл/кг = 3876 Р; 1 Р = = 0,258 мКл/кг).

– поглощенная доза(D) – энергия любого вида излучения, поглощенная массой любого вещества. Единицы измерения: системная – Грей (Гр), равная 1 джоулю энергии, поглощенному одним килограммом массы; внесистемная – рад (р) (1 Гр = 100 рад).

– эквивалентная доза(Н) – доза любого вида излучения при хроническом облучении биологических объектов, приравниваемая по биологическому эффекту к рентгеновскому или гамма-излучению. Эквивалентная доза равна произведению поглощенной дозы на коэффициент качества или взвешивающий коэффициент (что одно и то же) для любых видов излучения. Взвешивающий коэффициент для ?-излучения равен 1 (как у рентгеновского и ?-излучений), для медленных или тепловых нейтронов и протонов равен 5, для ?-излучения равен 20. Это значит, что при физически равных дозах рентгеновского и ?-излучения от последнего биологический эффект будет в 20 раз больше.

Единицы измерения: системная – Зиверт (Зв), равная Грею, деленному на взвешивающий коэффициент, внесистемная – бэр, равная раду, деленному на взвешивающий коэффициент. Бэр – это поглощенная доза любого вида ионизирующего излучения, которая имеет такую же биологическую эффективность, как 1 рад рентгеновского излучения со средней удельной ионизацией 100 пар ионов на 1 мкм в Н2О (1 Зв = 100 бэр).

Учитывая, что одни части тела (органы, ткани) более чувствительны, чем другие, для оценки используется также:

– эффективная доза(Е) – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты:

Таблица 12

Взвешивающие коэффициенты для тканей и органов

Е

Е

= ? (НТ ? WТ),

где НТ – эквивалентная доза в органе или ткани; WТ – взвешивающий коэффициент для органа или ткани. Единица эффективной дозы – Зв.

Взвешивающие коэффициенты для ткани и органов при расчете эффективной дозы – множители эквивалентной дозы, используемые в радиационной защите для учета различной чувствительности разных органов и тканей в возникновении стохастических эффектов радиации (табл. 12).

В медицине и радиобиологии эффективная доза рассматривается как показатель риска для здоровья, обусловленный воздействием ионизирующего излучения любой продолжительности, независимо от вида и энергии излучения.

Вышерассмотренные понятия описывают только индивидуально получаемые дозы. Однако для решения экологических и гигиенических задач, связанных с развитием популяций и проведением долгосрочных оценок по формированию здоровья, необходимо использовать показатели, характеризующие эффект воздействия ионизирующих излучений на группы населения:

– эквивалентная, или эффективная, ожидаемая доза при внутреннем облучении – доза за время, прошедшее после поступления радиоактивных веществ в организм, если время не определено, то его следует принять равным 50 годам для взрослых и 70 годам для детей;

– эффективная (эквивалентная) годовая доза – сумма эффективной (эквивалентной) дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной (эквивалентной) дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год. Единицы измерения – Зиверт (Зв);

– эффективная коллективная доза – мера коллективного риска возникновения стохастических эффектов облучения, равная сумме индивидуальных эффективных доз. Единица измерения – человеко-Зиверт (чел. – Зв).

Биологическое действие ионизирующей радиации характеризуется рядом особенностей, среди которых выделяют:

– отсутствие у млекопитающих специальных анализаторов для восприятия излучения;

– неощутимость воздействия, способность к кумуляции и в связи с этим наличие скрытого периода;

– морфологические и функциональные изменения элементов организма, которые определяются различной чувствительностью отдельных органов и тканей к воздействию ионизирующего излучения (ИИ);

– зависимость степени повреждения от поглощенной дозы.

Учитывая, что человек на протяжении всей жизни подвергается воздействию ионизирующего излучения в той или иной степени, возникает вопрос, оказывает ли это действие на человека отрицательный эффект, и если да, то в какой степени. Большинство ученых придерживается мнения, что ионизирующее излучение не является физиологическим для человека. Об этом свидетельствует, например, отсутствие в организме человека специфических к воздействию излучения рецепторов.

Механизм биологического действия ионизирующих излучений на живой организм очень сложный и, несмотря на большое количество исследований, до конца остается невыясненным. Полученные данные свидетельствуют о том, что у разных видов излучений механизм биологического действия в основном одинаков.

Итак, рассмотрим первичные процессы при действии ионизирующего излучения. При облучении биологических объектов, содержащих в своем составе в основном воду, находящуюся частично в свободном состоянии, частично входящую в состав органелл, принято считать, что 50 % поглощенной дозы в «обычной клетке» приходится на воду, другие 50 % – на ее органеллы и растворенные вещества. В соответствии с локализацией поглощенной энергии (в воде или в основном веществе) выделяют непрямое и прямое действие ионизирующего излучения.

При взаимодействии ионизирующей радиации с водой происходит выбивание электронов из молекул с образованием так называемых молекулярных ионов, несущих положительный и отрицательный заряды. Возникающие ионы воды в свою очередь распадаются с образованием ряда радикалов, которые взаимодействуют между собой. Считается, что основной эффект лучевого воздействия обусловлен такими радикалами, как Н+, ОН и особенно НО2 (гидропероксид). Возникшие в результате взаимодействия ионизирующего излучения с водой радикалы взаимодействуют с растворенными молекулами различных соединений, давая начало вторично радикальным продуктам. Следует отметить, что в результате прямого и непрямого действия ионизирующей радиации на биосубстрат возникают идентичные «вторичные» радикалы. Дальнейшие этапы развития радиационного поражения молекулярных структур и надмолекулярных образований сводятся к изменениям со стороны белков, липидов и углеводов. Облучение белковых растворов приводит к изменениям структуры белков за счет разрыва дисульфидных связей, разрыва пептидных и углеродных связей, происходит уменьшение содержания сульфгидрильных групп в аминокислотах, то есть в молекулах белков происходят изменения, приводящие к потере ферментативной и иммунной активности. Облучение растворов полисахаридов приводит к образованию простых сахаров (глюкозы, мальтозы и др.), которые в свою очередь окисляются и распадаются до органических кислот и формальдегида.

При действии ионизирующей радиации на липиды образуются свободные радикалы, которые, взаимодействуя с кислородом, образуют перекисные соединения, обладающие высокой химической активностью и играющие важную роль в развитии лучевого поражения. В результате этих процессов, протекающих практически мгновенно, образуются новые химические соединения (радиотоксины), не свойственные организму в норме. Все это приводит к нарушению сложных биохимических процессов обмена веществ и жизнедеятельности клеток и тканей, то есть к развитию лучевой болезни.

Проблема радиочувствительности структур клеток, клеток, тканей, организмов занимает центральное место в радиобиологии. Наиболее чувствительными к облучению структурами клеток организма человека являются: ядро и митохондрии. Повреждение этих структур происходит при достаточно малых дозах, и проявляются они в самые ранние сроки.

В ядрах чувствительных в разной степени клеток почти сразу после облучения угнетаются энергетические процессы, происходит выброс в цитоплазму ионов натрия и калия, нарушается нормальная функция мембран; одновременно возможны перестройки в ДНК, на уровне генов (генные мутации) или хромосом (хромосомные и геномные мутации).

В митохондриях наблюдается: набухание, деструкция крист и просветление матрикса; повреждение мембран митохондрий, эти изменения митохондрий проявляются, прежде всего, в резком угнетении процессов окислительного фосфорилирования (синтезе АТФ).

В реакции организма на поступление радионуклидов можно выделить три стадии радиационного поражения клетки (Кузин А. М., 1970):

1. Физическая стадия – на этой стадии излучение воздействует на сложные макромолекулярные образования, ионизируя и возбуждая их, образуя высокоактивные радикалы. Эта стадия длится на протяжении всего периода нахождения радионуклидов в органах и тканях (до их физического распада и выведения из организма).

2. Химические преобразования. Они соответствуют процессам взаимодействия белков, нуклеиновых кислот, углеводов и липидов с водой, кислородом, радикалами воды. Это приводит к возникновению органических перекисей вызывающих быстрое протекание реакций окисления, которые приводят к появлению множества измененных молекул. Радикалы, возникающие в слоях упорядоченно расположенных белковых молекул, взаимодействуют с образованием «сшивок», в результате чего нарушается структура биологических мембран. Повреждения мембран приводят к высвобождению ряда ферментов (ДНК-азы; фосфатазы, РНК-азы и др.)

3. Биохимическая стадия. Нарушение наступает в результате высвобождения ферментов из клеток органелл. Эти ферменты путем диффузии достигают любой органеллы клетки и легко проникают в нее, благодаря увеличению проницаемости мембран. Под воздействием этих ферментов происходит распад высокомолекулярных компонентов клетки, в том числе нуклеиновых кислот и белков, что в конечном итоге приводит к гибели клетки (некрозу).

Радиочувствительность клеток в значительной мере зависит от скорости протекающих в них обменных процессов. Клетки, для которых характерны интенсивно протекающие биосинтетические процессы, высокий уровень окислительного фосфорилирования и значительная скорость роста, обладают более высокой радиочувствительностью, чем клетки, пребывающие в стационарной фазе. Если принять в качестве критерия чувствительности к ионизирующей радиации морфологические изменения, то клетки тканей организма человека по степени возрастания чувствительности можно расположить в следующем порядке: нервная, хрящевая и костная, мышечная, соединительная ткань, щитовидная железа, пищеварительные железы, легкие, кожа, слизистые оболочки, половые железы, лимфатическая ткань, костный мозг.

Мутагенное воздействие ионизирующей радиации впервые установили российские ученые Г. А. Надсон и Г. С. Филиппов в 1925 г. в опытах на дрожжах. В 1927 г. это открытие было подтверждено Г. Мюллером на классическом генетическом объекте – дрозофиле.

Было показано, что ионизирующая радиация является средством индукции мутаций. Ионизирующее излучение может вызывать стойкие изменения в наследственном аппарате (мутации) как соматических, так и генеративных клеток. Мутации, возникающие в соматических клетках, могут в дальнейшем реализоваться в виде онкопатологии. Если мутации возникли в генеративных клетках (яйцеклетки и сперматозоиды), то в последующем они могут привести к развитию наследственной и врожденной патологии у потомков. Считается, что соматические клетки (содержащие диплоидный набор хромосом и ДНК) более устойчивы к воздействию радиации.

По уровню возникновения мутации подразделяются на:

– генные (связанные с перестройкой пар нуклеотидов на уровне гена);

– хромосомные (происходит изменение структуры хромосом) – делеция (потеря участка хромосомы), дупликация (удвоение участка хромосомы), инверсия (поворот на 180 градусов участка хромосомы) и транслокация (обмен участками между негомологичными хромосомами);

– геномные (имеет место изменение количества хромосом в сторону их уменьшения или увеличения).

На основании экспериментов было установлено, что ионизирующая радиация не имеет порога и показывает прямолинейную зависимость от дозы. Это свидетельствует о том, что любая сколь угодно малая доза ионизирующей радиации приводит к повышению частоты мутаций.

Биологический эффект воздействия ионизирующей радиации на организм человека зависит от уровня поглощенной дозы; времени облучения; мощности дозы; объема облучаемых тканей и органов; вида облучения. О поглощенной дозе уже говорилось выше, поэтому мы не будем повторяться и рассмотрим фактор времени – он в прогнозе возможных последствий облучения занимает важное место в связи с развивающимися после лучевого повреждения в тканях и органах процессов восстановления. Например, при однократном облучении собаки дозой 700 рентген самый вероятный исход облучения – гибель животного, облучение же дозой 720 рентген, но распределенной на год по 60 рентген в месяц, гибели животного не вызовет. Считается, что снижение мощности дозы облучения уменьшает биологический эффект. При малой мощности дозы скорость развития повреждений соизмерима со скоростью восстановительных процессов, с увеличением мощности излучения значимость процессов восстановления уменьшается, это в свою очередь приводит к возрастанию биологического эффекта. Степень лучевого поражения, развивающегося после облучения, в значительной мере зависит от того, подвергается ли облучению все тело или только какая-то часть. Например, при терапии злокачественных новообразований у больного в пораженной опухолью ткани создается поглощенная доза, достигающая тысяч рад, то есть доза, во много раз превышающая абсолютно смертельную для человека в случае тотального облучения.

При воздействии на организм ионизирующая радиация может вызвать два вида эффектов – стохастические и нестохастические.

Стохастические эффекты (беспороговые) – это те, для которых вероятность возникновения эффекта, а не его тяжесть, рассматривается как функция дозы без порога. В данном случае в основе этого понятия лежит концепция беспороговости и линейной зависимости между дозой, полученной индивидуумом и биологическим эффектом, вызванным облучением. К стохастическим эффектам в первую очередь относятся злокачественные новообразования и эффекты, связанные с возникновением наследственных и врожденных заболеваний. Количественная оценка зависимости доза – эффект для выхода злокачественных новообразований в достаточно широком диапазоне доз (от нескольких десятков до тысяч рад) осуществлена на обширном материале. Так, было обнаружено, что в отдаленные сроки после облучения (в среднем 9—11 лет) вырастает частота случаев возникновения лейкозов и других лимфо– и гемобластозов. С позиций концентрации беспороговости и линейной зависимости конечный эффект – количество индуцированных излучением опухолей зависит не от величины индивидуальных доз и их распределения, а в первую очередь от популяционной дозы (коллективной), которая выражается в человеко-Зивертах, или человеко-бэрах, и коллективного риска. Так, если дозу в 1 бэр или 1 сантиГрей (дозу, в 5 раз меньшую годовой предельно допустимой дозы, или в 3 раза меньшую той, которую пациент получает при рентгенографии зубов) распределить на 1 млн человек, то только от этой дозы можно ждать примерно 240 раковых заболеваний.

Нестохастические эффекты (пороговые, детерминированные) – это те эффекты, тяжесть которых варьирует в зависимости от дозы и для которых поэтому может существовать порог. К данным эффектам относят: лучевую болезнь, лучевой ожог, лучевую катаракту, лучевое бесплодие. В случае одномоментного тотального облучения человека значительной дозой или распределения ее на короткий срок эффект от облучения наблюдается уже в первые сутки, а степень поражения зависит от величины поглощенной дозы. При общем облучении человека дозой менее 100 бэр, как правило, отмечаются лишь легкие реакции организма, проявляющиеся в сдвигах в формуле крови, изменением некоторых вегетативных функций. При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть которой зависит от дозы облучения. Первая степень лучевой болезни (легкая) возникает при дозах 100–200 бэр, вторая степень (средней тяжести) – при дозах 200–300 бэр, третья степень (тяжелая) – при дозах 300–500 бэр и четвертая (крайне тяжелая) при дозах выше 500 бэр.

Другая форма острого лучевого поражения проявляется в виде лучевых ожогов. В зависимости от поглощенной дозы ионизирующей радиации имеет место радиация 1-й степени (при дозе до 500 бэр), 2-й степени (при дозе до 800 бэр), 3-й степени (при дозе до 1200 бэр) и 4-й (при дозе свыше 1200 бэр), проявляющаяся в разных формах – от выпадения волос, шелушения и легкой пигментации кожи (при 1-й степени) до язвенно-некротических поражений с образованием длительно незаживающих трофических язв (при 4-й степени лучевого поражения).

Под внутренним облучением понимают воздействие на организм ионизирующих излучений радиоактивных веществ, находящихся внутри организма. Такой вид облучения возможен при вдыхании, заглатывании радиоактивных изотопов и проникновении их в организм через покровы кожи. В данном случае особенностью действия радиоактивных веществ на организм по сравнению с любыми фармакологическими препаратами или промышленными ядами будет являться то, что поражающим началом при попадании внутрь является ионизирующая радиация, а не химическая активность радиоактивных изотопов и их соединений. Это обусловлено ничтожно малой массой радиоактивных веществ при соответствующей высокой активности. В то же время от химических свойств большинства радиоактивных изотопов или их соединений зависит характер распределения по органам и системам, а также скорость выведения из организма. На основании экспериментальных данных Национальное бюро стандартов США разработало рекомендации о недопустимости накопления в организме в течении всей жизни человека более 1 мкг радия, так как вероятность возникновения злокачественных новообразований при превышении резко возрастает.

Допустимое содержание радиоактивных веществ в организме зависит от степени опасности радиоактивных элементов при попадании внутрь и определяется их радиотоксичностью.

Радиотоксичность – свойство радиоактивных изотопов вызывать большие или меньшие патологические изменения при попадании их в организм. Радиотоксичность изотопов зависит от ряда моментов, главными из которых являются:

– вид радиоактивного превращения (например, лучевое поражение ткани или органа ?-частицами будет более выраженным, так как поглощенная доза при ?-распаде в 20 раз больше, чем при ?-распаде);

– средняя энергия одного акта распада (чем выше уровень энергии одного акта распада, тем больше будет радиотоксичность);

– схема радиоактивного распада (чем больше этапов радиоактивного превращения данного вещества, тем, соответственно, выше радиотоксичность);

– пути поступления радиоактивного вещества в организм.

Существует три различных пути поступления радиоактивных веществ в организм:

1) при вдыхании воздуха, загрязненного радиоактивными веществами;

2) через желудочно-кишечный тракт;

3) через кожу.

Наиболее опасен первый путь. Это обусловлено следующими причинами: во-первых, большим объемом легочной вентиляции; во-вторых, более высокими значениями коэффициентов усвоения, характеризующих долю отложившихся в организме радиоактивных веществ по отношению к общей поступающей внутрь активности. Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха проходят через верхние дыхательные пути. Их дальнейшая судьба зависит от их дисперсности. Крупные частицы, размеры которых превышают 1 мкм, эффективно задерживаются в верхних дыхательных путях.

При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа и химической формулы попадающего в организм соединения коэффициент резорбции изменяется в широких пределах: от сотых долей процента (цирконий) до десятков процентов (железо, кобальт, стронций); радий – до 30 %.

Резорбция через неповрежденную кожу в 200–300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли. Исключение составляет изотоп водорода – тритий, легко проникающий в кровь через кожу даже при обычных условиях.

По характеру распределения в организме человека радиоактивные вещества можно условно разделить на три группы:

1) отлагающиеся преимущественно в скелете (остеотропные), к ним относятся кальций, стронций, барий, радий, цирконий;

2) концентрирующиеся в печени (до 60 %), из остального количества в скелете отлагается до 25 % (цезий, нитрат плутония и др.);

3) равномерно распределяющиеся по органам и системам (водород, углерод, железо, полоний);

4) с тенденцией к накоплению в мышцах – калий, цезий, рубидий;

5) с тенденцией к накоплению в ретикулоэндотелиальной системе (селезенке, лимфатических узлах) – рутений.

Особое место занимает радиоактивный йод. Он селективно накапливается в щитовидной железе, причем удельная активность ткани щитовидной железы может превышать таковую других органов в 100–200 раз.

Время пребывания излучателя в организме, по существу, определяет время облучения тканей, в которых локализован изотоп. Это зависит, во-первых, от периода полураспада изотопа (Тф), во-вторых, от скорости его выведения из организма, которая характеризуется периодом полувыведения (Тб), то есть временем, в течение которого из организма выводится половина введенного радиоактивного вещества. Для количественной характеристики скорости исчезновения радиоактивного вещества из организма используется производственный показатель – эффективный период (Тэфф) – время, в течение которого активность изотопа в организме уменьшается вдвое.

Эффективный период рассчитывается по формуле:

Тэфф = (Тф ? Тб) / (Тф + Тб).

Эффективный период для различных радиоактивных изотопов отличается широким многообразием: от нескольких часов (24Na, 64Cu) и дней (131I) до десятков лет (90Sr). Чем больше эффективный период у изотопа, тем выше степень его радиоактивности, так как суммарная доза возрастает с увеличением эффективного периода полураспада.

Сроки поступления радиоактивных веществ в организм имеют значение при оценке степени радиоактивности.

Вопросы радиационной безопасности в международном масштабе регламентируются Международным комитетом по радиационной защите (МКРЗ), который тесно сотрудничает с МАГАТЭ и Международной комиссией по радиационным единицам (МКРЕ).

В России регулирование радиационной безопасности и защита населения от воздействия загрязняющих веществ регламентируется Федеральными законами «О радиационной безопасности населения» (1996), «О санитарно-эпидемиологическом благополучии населения» (1999), «Об использовании атомной энергии» (1996). На основе указанных законов разработаны и утверждены «Нормы радиационной безопасности» (НРБ-99), регламентирующие требования законов в форме основного дозового предела, допустимого уровня воздействия ионизирующих излучений и других требований по ограничению облучения человека. В «Нормах радиационной безопасности» даны также термины и определения, относящиеся к вопросам радиационной безопасности, и установлены следующие категории:

категория А – персонал – лица, которые постоянно или временно непосредственно работают с источниками ионизирующих излучений;

категория Б – ограниченная часть населения, которое не работает непосредственно с источниками излучения, но по условиям проживания или размещения рабочих мест может подвергаться воздействию радиоактивных веществ и других источников излучения, применяемых в учреждении и (или) удаляемых во внешнюю среду с отходами;

категория В – оставшееся население (большинство).

Среди персонала категории А выделены две группы:

– лица, условия труда которых таковы, что доза может превышать 0,3 годовой предельно допустимой дозы (ПДД), для этой группы обязателен индивидуальный дозиметрический контроль;

– лица, условия труда которых таковы, что доза не может превысить 0,3 годовой ПДД, для лиц этой группы индивидуальный контроль не является обязательным. Сохраняется контроль мощности дозы внешнего облучения и концентрации радионуклидов в воздухе рабочих помещений. Оценка облучения персонала проводится по этим данным. Понятие «предельно допустимая доза» (ПДД) – это наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала (категория А) неблагоприятных изменений, обнаруживаемых современными методами.

Для ограниченной части населения (категория Б) установлен «предел дозы» (ПД) – это предельная индивидуальная эквивалентная доза за год, которая при равномерном накоплении в течение 70 лет не вызовет в состоянии здоровья ограниченной части населения (категории Б) неблагоприятных изменений, обнаруживаемых современными методами исследований. ПД является основным дозовым пределом для категории Б.

Таблица 13

Дозовые пределы в зависимости от группы критических органов и категории облучаемых лиц, бэр/год

2.6. Природный радиационный фон. Влияние радиации на организм человека. Нормы радиационной безопасности

В зависимости от радиочувствительности выделены три группы критических органов или тканей. В нормах радиоактивной безопасности для категорий А и Б в зависимости от группы критических органов установлены дозовые пределы.

Критический орган – орган, ткань, часть тела или все тело, облучение которых причиняет наибольший ущерб здоровью данного лица или его потомству. В основу деления на группы критических органов положен закон радиочувствительности Бергонье – Трибондо, по которому наиболее чувствительными к ионизирующему излучению являются наименее дифференцированные ткани, клетки которых интенсивно делятся.

К первой группе относятся: гонады, красный костный мозг и все тело, если тело облучается равномерным излучением.

Ко второй группе относятся: мышечная и нервная ткань, щитовидная железа, жировая ткань, печень, селезенка, почки, желудочно-кишечный тракт, легкие, хрусталик глаза и другие органы.

К третьей группе относятся: кожный покров, костная ткань (табл. 13).

Ограничение облучения населения (категория В) определяется возможным возникновением стохастических эффектов (новообразования, наследственные и врожденные заболевания).

По данным Научного комитета ООН по действию атомной радиации считается, что удвоение частоты спонтанных мутаций при действии острого одноразового облучения происходит при дозе 30 рад. При хроническом облучении малыми дозами, когда идут процессы восстановления, тот же эффект должен наблюдаться при накапливании суммарной дозы в 100 рад в течение репродуктивного периода жизни человека (30 лет).

Похожие книги из библиотеки