1.3. Понятие биоритмов. Биоритмологические аспекты адаптации человека
Биологические ритмы – фундаментальное свойство органического мира, обеспечивающее его способность к адаптации и выживанию в циклически меняющихся условиях внешней среды.
Биологический ритм – это самоподдерживающийся автономный процесс периодического чередования состояний организма и колебаний интенсивности физиологических процессов и реакций. Благодаря биоритмам обеспечивается внутреннее движение, развитие организма, его устойчивость к воздействию факторов окружающей среды. Это осуществляется за счет ритмичного чередования процессов анаболизма и катаболизма (Оранский И. Е, 1988). Борьба противоположностей, обуславливающая движение (развитие), лежит в основе адаптационных процессов, обеспечивающих синхронизацию физиологических функций организма с разнообразными изменениями окружающей среды. Исследование биоритмов позволяет оценивать реактивность, функциональное состояние и адаптационные возможности организма (Комаров Ф. И., [и др.], 1989).
Изучением биоритмов живых систем, их связи с ритмами, существующими в природе, занимается относительно недавно возникшая наука – хронобиология (биоритмология), составной частью которой является хрономедицина.
Последняя, с помощью использования хронобиологических параметров, в основном решает задачи, связанные с улучшением диагностики, профилактики и лечения патологических состояний у людей (Комаров Ф. И., [и др.], 1989).
В нашей стране опубликовано много работ, посвященных вопросам биоритмологии (Алякринский Б. С., 1975, 1983; Моисеева Н. И. [и др.], 1981, 1985; Дильман В. М., 1981, 1986; Туркменов М. Т., 1983; Деряпа Н. Р. [и др.], 1985; Степанов С. И., 1986; Комаров Ф. И., 1989). Поскольку в биоритмологическом аспекте здоровье представляет собой оптимальное соотношение взаимосвязанных ритмов физиологических функций организма и их соответствие закономерным колебаниям среды обитания, анализ изменений этих ритмов и их рассогласования помогает глубже понять механизмы возникновения и развития патологических процессов, улучшить раннюю диагностику болезней и определить наиболее целесообразные временные схемы терапевтических мероприятий.
Существует несколько классификаций биоритмов, в зависимости от критериев, положенных в их основу.
По принадлежности к классу явлений ритмы подразделяются (Оранский И. Е., 1988):
I. Ритмы неживой природы.
II. Ритмы живой природы:
а) растений;
б) животных;
в) человека.
В настоящее время в человеческом организме обнаружено более 500 биоритмов на различных структурных уровнях: клеточном, тканевом, органном, организменном (Воложин A. M., Субботин Ю. К., 1998).
Биоритмы характеризуются широким диапазоном периодов – от миллисекунды до нескольких десятков лет. В связи с этим различают низко-, средне– и высокочастотные биоритмы (Смирнов К. М. [и др.], 1980; Оранский И. Е., 1988; Halberg F., 1969):
1. Ритмы высокой частоты – от долей секунды до 30 мин (осцилляции на молекулярном уровне, ритмы электроэнцефалограммы, сокращения сердца, дыхание, перистальтика кишечника).
2. Ритмы средней частоты – от 30 мин до 6 сут включают:
а) ультрадианные – от 30 мин до 20 ч. Сюда относятся колебания главных компонентов мочи и крови с частотой одного цикла около 20 ч, повторение стадий быстрых движений глаз через каждые 90 мин сна, процессы секреции;
б) циркадианные (околосуточные) – от 20–28 ч. Они синхронизированы с вращением Земли вокруг оси, сменой дня и ночи (ритмы сон – бодрствование, суточные колебания различных физиологических параметров – температуры тела, артериального давления, частоты клеточных делений и др.). Эти ритмы наиболее устойчивые и сохраняются в течение жизни организма;
в) инфрадианные – от 28 ч до 6 сут. Эти ритмы наименее изучены (недельный ритм выделения с мочой некоторых гормонов).
3. Ритмы низкой частоты (от 7 дней и выше).
а) циркасептидианные – 7 дней (околонедельный);
б) циркавигинтидианные – 21 день;
в) циркатригинтидианные – 30 дней (лунный);
г) циркануальный – около 1 года;
д) макроритмы – обусловленные циклами солнечной активности с периодами 2 года, 3 года, 5 лет, 8 лет, 11 лет, 22 года, 35 лет;
е) мегаритмы – свыше 10 лет.
Низкочастотные ритмы процессов жизнедеятельности, так же как и суточные (циркадианные), широко представлены в организме и имеют связь с геофизическими и социальными факторами. В основе выделения каждого из биоритмов лежат четко регистрируемые колебания какого-либо функционального показателя. Например, околонедельному биоритму соответствует уровень выделения с мочой некоторых гормонов, околомесячному – овариально-менструальный цикл у женщин, сезонным биоритмам – изменение продолжительности сна, мышечной силы, заболеваемости и др., окологодовым – рост и физическое развитие детей, иммунитета. Мегаритмы проявляются в изменении численности популяций, видов животных, вспышках эпидемий.
В зависимости от уровней гомеостатических механизмов биоритмы человека можно подразделить на следующие классы (Моисеева Н. И., Сысуев В. М., 1981):
1. Биоритмы клеточных образований, клеток, тканей.
2. Биоритмы органов.
3. Организменные биоритмы.
4. Биоритмы популяций.
Частотные спектры разных уровней биоритмов в значительной степени перекрываются, однако существует общая тенденция к увеличению длины периодов по мере усложнения биологических систем.
С точки зрения взаимодействия организма и среды, выделяют два типа колебательных процессов:
1. Адаптивные ритмы (экологические), или биоритмы, то есть колебания с периодами, близкими к основным геофизическим циклам, роль которых заключается в адаптации организма к периодическим изменениям внешней среды.
2. Физиологические, или рабочие, ритмы, то есть колебания, отражающие деятельность физиологических систем организма (сердцебиение, дыхание и т. д.).
Период (частота) физиологического ритма может изменяться в широких пределах в зависимости от степени функциональной нагрузки. Период экологического ритма, напротив, сравнительно постоянен, закреплен генетически.
В биоритме всегда присутствуют две компоненты – экзогенная и эндогенная. Экзогенная компонента биоритма – это воздействие на организм любого внешнего фактора, эндогенная – обусловлена ритмическими процессами внутри организма. Эндогенный ритм непосредственно определяется генетической программой организма, которая реализуется через нервный и гуморальный механизмы.
Биоритмы имеют внутреннюю и внешнюю регуляцию.
Внутренняя регуляция биоритмов определяется функционированием так называемых биологических часов. Для объяснения эндогенных механизмов биологических часов предложено несколько гипотез.
1. «Хрононгипотеза» – была сформулирована К. Д. Ере и Е. А. Тракко. Согласно этой гипотезе механизм околосуточных ритмов связан с наследственным аппаратом клетки, в частности с определенными участками дезоксирибонуклеиновой кислоты (ДНК).
2. «Мембранная теория». Согласно данной теории цикличность наблюдаемых процессов регулируется состоянием липидно-белковых мембран и их проницаемостью для ионов калия, которая периодически изменяется. Мембранные структуры клетки, обладая рецепторными свойствами, контролируют биоритмы, связанные с фотопериодизмом и действием температурных факторов.
3. «Мультиосцилляторная модель». Считается, что в организме существуют собственные биологические осцилляторы (пейсмекеры) и наблюдаемые периоды ритмов отражают работу биологических. Источником такой активности является энергия метаболизма. Биологических часов в организме много (к настоящему времени у человека обнаружено более 300, ритмически меняющихся с периодом около 24 ч физиологических функций).
В настоящее время общепризнано, что циркадианная система организма строится по мультиосцилляторному принципу, согласно которому автономные генераторы суточных ритмов объединяются в несколько групп сцепленных осцилляторов, относительно независимых друг от друга, но имеющих иерархическую соподчиненность и синхронизированных по фазе и периоду. Что касается механизма биологических часов, то уже не вызывает сомнения сам факт наличия клеточных пейсмекеров (генераторов ритма), способных генерировать автоколебания с околосуточным периодом (Гора Е. П., 1999).
Мультиосциллярный принцип организации повышает адаптивную пластичность организма, позволяя эффективно приспосабливаться к различным по временной организации условиям среды.
Согласно исследованиям Комарова Ф. И., (1989) в организме осцилляторы одного иерархического уровня функционируют параллельно, а разных уровней – последовательно (рис. 3).
Внутренняя регуляция биоритмов. Согласно современным представлениям, в организме действуют биологические часы трех уровней (Билибин Д. П., Фролов В. А., 2007).
Первый уровень связан с деятельностью эпифиза. Современные исследования показывают, что биологические ритмы находятся в строгой иерархической подчиненности основному водителю ритмов, расположенному в супрахиазматических ядрах гипоталамуса (СХЯ). Гормоном, доносящим информацию о ритмах, генерируемых СХЯ, до органов и тканей, является мелатонин (по химической структуре – индол), преимущественно продуцируемый эпифизом из триптофана. Мелатонин также продуцируется сетчаткой, цилиарным телом глаза, органами ЖКТ. Активация регуляторной деятельности эпифиза относительно биоритмов «запускается» сменой дня и ночи (входным «рецептором» являются, в том числе, и глаза, хотя и не только они).
I, II – природные синхронизаторы, внешние по отношению к организму; 11–23 – внутренние осцилляторы организма; первая фаза индекса – иерархический уровень, вторая – номер осциллятора на иерархическом уровне.
Толщина стрелок отражает силу влияния
Ритм продукции мелатонина эпифизом носит циркадианный характер и определяется СХЯ, импульсы из которого регулируют активность норадренергических нейронов верхних шейных ганглиев, чьи отростки достигают пинеалоцитов. Мелатонин является мессенджером не только основного эндогенного ритма, генерируемого СХЯ и синхронизирующего все остальные биологические ритмы организма, но также и корректором этого эндогенного ритма относительно ритмов окружающей среды. Следовательно, любые изменения его продукции, выходящие за рамки нормальных физиологических колебаний, способны привести к рассогласованию как собственно биологических ритмов организма между собой (внутренний десинхроноз), так и ритмов организма с ритмами окружающей среды (внешний десинхроноз).
Второй уровень биологических часов связан с супраоптической частью гипоталамуса, который с помощью так называемого субкомиссурального тела имеет связи с эпифизом. Через эту связь (а может быть, и гуморальным путем) гипоталамус получает «команды» от эпифиза и регулирует биоритмы далее. В эксперименте было показано, что разрушение супраоптической части гипоталамуса ведет к нарушению биоритмов.
Третий уровень биологических часов лежит на уровне клеточных и субклеточных мембран. По-видимому, какие-то участки мембран обладают хронорегуляторным действием. Об этом косвенно свидетельствуют факты о влиянии электрических и магнитных полей на мембраны, а через них и на биоритмы.
Таким образом, координирующую роль в синхронизации ритмов всех клеток многоклеточного организма играет гипоталамо-гипофизарная система (Билибин Д. П., Фролов В. А., 2007).
Внешняя регуляция биоритмов связана с вращением Земли вокруг своей оси, движением ее по околосолнечной орбите, с солнечной активностью, изменениями магнитного поля Земли и рядом других геофизических и космических факторов, причем среди экзогенных факторов, выполняющих функцию «датчиков времени», наиболее значимы свет, температура и периодически повторяющиеся социальные факторы (режим труда, отдыха, питания). Атмосферное давление и геомагнитное поле как датчики времени играют меньшую роль. Таким образом, у человека выделяется две группы внешних синхронизаторов – геофизические и социальные (Билибин Д. П., Фролов В. А., 2007).
Ярким примером формирования эндогенных ритмов под влиянием синхронизаторов внешней среды является влияние на новорожденного ребенка с его эндогенными ритмами таких синхронизаторов, как звук, свет, пища и т. д., а по мере развития ребенка усиливается роль социальных факторов. Сравнительно быстро у ребенка формируется суточный ритм физиологических процессов. Известный хронопедиатр Т. Хельбрюгге установил, что первые признаки суточной периодики выделения с мочой натрия и калия отмечаются на 4—20-й неделе, а креатинина и хлоридов – на 16–22-м месяце после рождения. На 2—3-й неделе происходит начало синхронизации с ритмом дня и ночи на протяжении суток такого показателя, как температура тела, а частота пульса – на 4—20-й неделе жизни ребенка.
Характеристика синусоиды (биоритма):1 – акрофаза – наивысшая точка волны; 2 – период биоритма – интервал между вершинами волн; 3 – амплитуда – наибольшее отклонение сигнала от мезора; 4 – мезор – среднее значение сигнала (делит волну биоритма пополам); 5 – артофаза (надир, батифаза) – низшая точка волны; 6 – частота – это количество циклов, совершающихся в единицу времени
Биоритмы в той или иной форме присущи всем живым организмам. В основе всякой ритмики лежит периодический волновой процесс. Простейшая кривая, описывающая биоритм, – синусоида.
Для характеристики волнового процесса используют целый ряд показателей: период, мезор (уровень), амплитуда, фаза (акрофаза, ортофаза), частота (рис. 4).
Выделяют четыре варианта изменений биоритмов:
Вариант 1 (норма). Индивидуальные диаграммы характеризуются положением мезора в зоне доверительного интервала нормы, акрофаза и амплитуда ритма соответствуют данным здорового человека. Наличие такого варианта суточного ритма указывает на сохранность временной организации физиологического процесса.
Вариант 2А. Положение акрофазы индивидуальной диаграммы в зоне доверительного интервала нормы. Амплитуда колебаний снижена относительно нормы на 30 %. Мезор близок к показателям нормы. Этот вариант отражает нарушения в процессах управления временной организации физиологических функций и свидетельствует о режиме перенапряжения.
Вариант 2Б. Амплитуда колебаний выше нормы на 30 %. Этот вариант свидетельствует о наличии активного поиска оптимального функционирования системы.
Вариант 3. Положение акрофазы биоритма выходит за пределы доверительного интервала нормы. Отличаются изменения амплитуды ритма в сторону как ее повышения, так и понижения. Эти изменения в показателях ритма указывают на временное расположение функций – десинхроноз.
Вариант 4. Индивидуальные диаграммы имеют вид низко амплитудных кривых. Амплитуда ритма не превышает 10–15 % от нормы – это крайнее проявление десинхроноза.
В процессе различных воздействий (лечебные или иные воздействия) могут происходить изменения в основных показателях биоритма. Совокупность этих изменений можно разделить на три качественных показателя (Оранский И. Е., 1988).
1. Изменения положительного характера:
а) возникновение ритма там, где он раньше отсутствовал;
б) нормализация количественных показателей – амплитуды и среднесуточного уровня.
Эти изменения расцениваются как проявления синхронизирующего эффекта.
2. Изменения отрицательного характера: дезорганизация ритма, резкое увеличение или уменьшение амплитуды колебаний и среднесуточного уровня. Эти изменения расцениваются как проявления десинхроноза.
3. Отсутствие изменений – это незначительные сдвиги в любом из показателей биоритма.
Из всего многообразия циклических процессов важное значение имеют суточные и сезонные ритмы. Это связано с тем, что суточная и сезонная периодичности присущи всем уровням биологической организации.
Рассмотрим вначале влияние на организм суточных ритмов. Наиболее ярким, с точки зрения ритмичности, феноменом Земли является чередование дня и ночи. Чередование света и темноты сопровождается синхронным изменением не только освещенности, но и температуры окружающей среды, а также гелиомагнитным излучением. Претерпевает изменения и спектровый состав света. Днем солнечный свет имеет максимум энергии в желто-зеленой, а свет неба – в фиолетово-голубой части спектра. В сумерки уменьшается освещенность, а вместе с нею уменьшается процент ультрафиолетовых лучей. Отчетливой изменчивостью отличается суточный ход температуры и влажности, наименьшей ритмичностью – атмосферное давление.
По данным Д. Ассмана (1966), понижение атмосферного давления оказывает возбуждающее действие на симпатическую нервную систему, повышает восприимчивость к инфекционным заболеваниям, подавляет настроение и снижает трудоспособность и повышение атмосферного давления, и напротив, вызывает возбуждение парасимпатической нервной системы. Приведенный пример показывает сложность и многогранность влияния природных факторов.
К настоящему времени у человека обнаружено более 300 ритмически меняющихся физиологических функций с периодом около 24 ч.
Впервые Франц Халберг (1959) ввел понятие циркадианных ритмов, то есть околосуточных. В настоящее время считается, что в свободно текущем состоянии период циркадианного ритма человека составляет 25,0+0,5 ч и не зависит от того, выполняется ли тяжелая физическая работа или соблюдается постельный режим.
Основные суточные ритмы человека:
1. Умственная и физическая работоспособность. В часы дневного бодрствования человека уменьшается время реакции на зрительный и слуховой раздражители, увеличивается скорость и точность переработки информации. Физический труд также эффективнее днем, чем ночью, так как днем координация движений, лабильность нервно-мышечного аппарата, сила мышц и их выносливость выше.
2. Дыхание. Суточные ритмы частоты, глубины и минутного объема дыхания у человека имеют максимумы в дневные часы, причем максимумы скорости вдоха и выдоха приходятся на вторую половину дня.
3. Сердечно-сосудистая система. Четкой суточной периодикой обладают все показатели функции кровообращения. Максимум частоты сердечных сокращений у человека в состоянии покоя приходится на вторую половину дня. Сократительная функция миокарда, ударный и минутный объем кровообращения, мощность сердечных сокращений – также выше в дневное время. Диастолическое давление нередко бывает выше ночью и утром. Реактивность кровеносных сосудов к суживающим и расширяющим агентам максимальна в дневное время.
4. Метаболические процессы. Один из показателей углеводно-липидного обмена, отношение потребляемого кислорода к выделяемому СО2, равен единице днем и понижается ночью. Повышенная способность организма к утилизации углеводов в первой половине дня проявляется в увеличении толерантности к нагрузке глюкозой. Максимальная мобилизация липидов отмечается вечером и ночью. Наибольшее содержание триглициридов и холестерина в сыворотке крови наблюдается днем, а содержание в ней суммарной фракции липопротеидов низкой и очень низкой плотности – вечером. Для устойчивых биоритмов белкового обмена характерно преобладание катаболических процессов в период активности организма, и анаболических – во время покоя. Экскреция мочевины повышается днем. Показатели водно-электролитного обмена – выведение с мочой воды, натрия, калия, кальция, хлоридов и других неорганических веществ совпадает с периодом наибольшей активности организма.
Ведущую роль в координации всех этих циклических процессов играют циркадианные ритмы активности механизмов нервной и эндокринной регуляции. Практически все ее звенья (высшие отделы ЦНС, вегетативная нервная система, гипоталамическая секреция рилизинг факторов, секреция гормонов гипофиза, функциональная реактивность периферических желез, емкость транспортной системы крови, метаболизм и т. д.) имеют свои биоритмы и определяют суточные колебания концентрации гормонов, запуская тем самым биоритмы других физиологических показателей. Это относится и к суточным колебаниям тонуса вегетативной нервной системы, тесно связанной со сменой фаз сна и бодрствования. При этом уровень адреналина, норадреналина и продуктов их обмена в моче и катехоламинов в крови выше днем, чем ночью.
Суточные ритмы активности гипофиза проявляются в колебаниях активности тропных гормонов. Максимум их секреции имеет место во время ночного сна. В первой половине ночи возрастает уровень тириотропного гормона в крови. Колебания концентрации адренокортикотропного гормона характеризуются несколькими подъемами во второй половине ночи. Максимум содержания в крови гормонов, вырабатываемых периферическими эндокринными железами, или совпадают с повышением содержания тропных гормонов или отстает от него на 2–3 часа.
Например, концентрация глюкокортикоидов в плазме крови человека достигает максимума перед пробуждением, в этот же период времени нарастает и содержание в крови андрогенов. Концентрация тиреоидных гормонов наиболее максимальна во второй половине ночи, а концентрация альдостерона у человека выше в утренние часы.
Выраженные циркадные ритмы имеются также со стороны факторов иммунитета, в том числе фагоцитоза, содержания в крови Т– и В-лимфоцитов, активности комплемента.
Суточные колебания различных функций организма образуют единый ансамбль, в котором прослеживается строго упорядоченная последовательность в активизации поведенческих, физиологических и метаболических процессов. В основе временной координации ритмов лежит принцип, согласно которому колебания уровня функционирования различных систем организма, как правило, бывают синхронизированными по фазе с ритмами функциональных возможностей этих систем.
Условно суточный цикл можно разделить на три фазы, характеризующиеся преобладанием определенных эндокринных и метаболических процессов (Деряпа Н. Р. [и др.] 1985):
1-я фаза – восстановления, которая охватывает у человека первую половину сна. В эту фазу отмечается повышение секреции СТГ, пролактина, ТТГ, ЛГ, то есть гормонов с преимущественно анаболическим действием. Одновременно увеличивается митотическая активность клеток, которым свойственно непрерывное самообновление. Преобладание парасимпатических влияний в конце активного периода способствует накоплению гликогена в печени, который расходуется во время сна на биоэнергетические потребности организма при отсутствии внешних поступлений биоэнергетических субстратов. На ЭЭГ в этот период преобладают стадии медленно-волнового сна. Наряду со структурно-функциональным восстановлением первая половина сна играет важную роль в процессах долговременного запоминания информации, накопленной в активный период. Предполагают, что повышенная секреция СТГ во время медленно-волнового сна активизирует синтез белков в мозге и способствует формированию долговременной памяти.
2-я фаза – подготовки к активной деятельности, протекает во второй половине сна и в начале периода бодрствования. Этот период характеризуется увеличением доли парадоксальных стадий сна, которые играют важную роль в творческой переработке и упорядочивании накопленной информации. Синхронно с наступлением парадоксального сна увеличивается секреция АКТГ и кортикостероидов. Активация гипоталамо-гипофизарной системы реципрокно подавляет секрецию СТГ, ЛГ и ТТГ. Увеличение уровня кортикостероидов снижает митотическую активность клеток. В отличие от пептидных гормонов у стероидных гормонов многие метаболические эффекты реализуются после значительного латентного периода. Поэтому метаболические изменения, вызванные повышением уровня стероидных гормонов, наблюдаются только через 4–6 ч после пика концентрации глюкокортикоидов в крови.
3-й фаза – активности по нейрофизиологическим критериям, характеризуется высоким уровнем бодрствования, что выражается в преобладании высокочастотных ритмов ЭЭГ, повышенной нервной, моторной и вегетативной реактивности организма на внешние воздействия. В этот период характерно усиление функциональной активности симпатико-адреналовой системы. Гормоны и нейромедиаторы этой системы играют важную роль в стимуляции сердечной деятельности, мобилизации биоэнергетических субстратов в формировании эмоциональных реакций организма и улучшении процессов обучения. Адреналин и норадреналин существенно подавляют митотическую активность клеток.
Биологические ритмы, как и любое свойство организма, обладают индивидуальными особенностями. Разнообразие кривых суточного ритма определяется, с одной стороны, внешними условиями, с другой, – внутренними свойствами организма: состоянием здоровья, возрастом, конституциональными особенностями.
В приложении к человеку широкое распространение получила биоритмологическая классификация, основанная на индивидуальных различиях по фазам максимальной умственной и физической работоспособности. Люди, относящиеся к утреннему типу («жаворонки»), предпочитают работать в первой половине дня, их суточные ритмы, прежде всего температура тела, имеют максимумы, существенные на более ранние часы относительно среднестатистических значений.
«Жаворонки» быстро засыпают и просыпаются примерно в одни и те же утренние часы независимо от времени отхода ко сну. При позднем засыпании у них значительно сокращается продолжительность сна, а по субъективным оценкам отличается ухудшением функционального состояния организма. Люди, относящиеся к вечернему типу («совы»), наоборот, более работоспособны во второй половине дня и даже ночью. Максимум температурного режима у них смещен на более поздние часы. «Совы» засыпают более длительное время, но продолжительность сна у них всегда остается постоянной. Поэтому не зависимо от времени отхода ко сну они чувствуют себя хорошо отдохнувшими и сохраняют высокую работоспособность.
Немецкий исследователь Ф. Хамп в группе из 400 обследованных выявил у 52 % преобладание того или иного типа «деловой активности», из них 35 % он отнес к «вечерним» типам и 17 % – к «утренним». Наибольший процент лиц «утреннего» типа (28 %) он выявил среди служащих; среди работников умственного труда преобладали лица «вечернего» типа, тогда как среди рабочих, занятых физическим трудом, почти 50 % составили «аритмики».
При обследовании студентов одного из московских вузов было обнаружено, что 25 % из них предпочитают работать в утренние часы, более 30 % – в вечерние и даже ночные часы, а 45 % – одинаково эффективно трудятся в любое время. При анализе особенностей личности этих студентов выявлены существенные различия. Представители группы «утреннего» типа были энергичными людьми, они охотно следовали принятым взглядам, общественным нормам. У этих студентов неудачи легко вызывали сомнения в собственных силах, появлялись тревога и волнения, стремительно падали настроение и предприимчивость. Студенты этой группы стремились избегать различных конфликтов, неприятных разговоров. Студенты из группы «вечернего» типа также обладали высокой активностью, но, в отличие от «утренних», легко забывали все неудачи и неприятности. Их не пугали возможные трудности, конфликты и эмоциональные проблемы. «Аритмики» занимали промежуточное положение, но были ближе к лицам «утреннего» типа. У людей «утреннего» типа чаще наблюдалось повышенное артериальное давление, по сравнению с людьми «вечернего» типа.
Сезонные ритмы. Биологические колебания с периодом, равным одному году (циркануальные), называют сезонными ритмами. Их целевой функцией является приспособление организма к изменениям условий внешней среды в различные сезоны года. В основе циркануальных ритмов лежит комплекс внешних и внутренних причин, которые можно объединить в три группы, различающиеся по механизму действия (Деряпа Н. Р., 1985):
1. Адаптивные изменения функционального состояния организма, направленные на компенсацию годичных колебаний основных параметров окружающей среды, и прежде всего температуры, а также качественного и количественного состава пищи.
2. Реакции на сигнальные факторы среды – продолжительность светлого дня, напряженность геомагнитного поля, некоторые химические компоненты пищи, факторы среды, играющие роль сезонных «датчиков» времени, способны вызывать значительные морфофункциональные перестройки организма, которые, однако, не связаны с приспособлением к действию именно этих факторов.
3. Эндогенные механизмы сезонных биоритмов. Действие этих механизмов носит адаптивный характер, обеспечивающий полноценное приспособление организма к циклическим изменениям параметров окружающей среды.
Репродуктивная функция. Ведущую роль в осуществлении сезонных биоритмов репродуктивной функции играют эпифиз и гипоталамо-гипофизарная система. С удлинением ночи происходит увеличение выработки мелатонина эпифизом, который, в свою очередь, приводит к угнетению гонадотропной функции гипоталамо-гипофизарной системы.
Обмен веществ. У человека при свободном выборе продуктов питания общая калорийность пищи возрастает в осенне-зимний период. Причем летом увеличивается потребление углеводов, а зимой – жиров. Последнее приводит к возрастанию в крови общих липидов, триглицеридов и свободных жиров, наблюдается возрастание уровня потребления кислорода и снижение теплоотдачи с поверхности тела в холодное время года. Возрастание функциональной активности симпатоадреналовой системы в зимние месяцы сопровождается увеличением частоты сокращений сердца, снижением концентрации натрия в слюне, выделения адреналина и норадреналина в тканях организма, характерно возрастание в крови концентрации тропных гормонов гипофиза – весной, а тестостерона – во второй половине лета и начале осени. Глюкокортикоидная функция надпочечников минимальна летом. Функция ренин-ангиотензин-альдостероновой системы максимальна в весенние месяцы, а функциональная активность щитовидной железы – в зимнее.
Функциональная активность системы кровообращения совпадает с сезонными колебаниями энергетического обмена. Наряду с частотой сердечных сокращений в зимнее время у практически здоровых людей отмечены наибольшие показатели артериального давления и сократительной функции миокарда.