Терапии, имитирующие противовирусную защиту, – CRISPR/Cas9

Как найти новые лекарства для лечения заболевания? Можно попробовать имитировать природу и противостоять нуклеиновым кислотам, используя другие нуклеиновые кислоты и молекулярные «ножницы». Природа использует такие возможности. Существует три возможных механизма действия терапевтических нуклеиновых кислот: «антисмысловая» () ДНК, рибозимы и сайленсерная РНК (миРНК или siRNA). Во всех трех случаях терапевтические нуклеиновые кислоты имитируют противовирусные механизмы естественного происхождения. Сначала специалисты по разработке лекарственных препаратов были, похоже, полны энтузиазма: «Мы можем скопировать и апробировать механизмы, используемые природой. Если мы хотим летать, нужно имитировать движения птиц», – рассуждали они. Всякий раз, когда появлялась информация о новой терапии, это событие отмечалось как революция и сопровождалось публикацией пресс-релизов, созданием новых компаний и мобилизацией бизнес-ангелов.

Для разработки препаратов на основе терапевтических нуклеиновых кислот не требуются кристаллические структуры или высокопроизводительный скрининг препаратов, все это можно сделать на бумаге путем сравнения последовательностей. Нужно лишь помнить правила формирования парных комплексов двойных цепочек: А–Т и G–C, а в случае с РНК – A–U и G–C. Что касается «антисмысловой» терапии, она предусматривает разработку участка одноцепочечной ДНК или РНК против опасного гена, подлежащего инактивации. мРНК этого гена образует локальный гибрид с искусственной ДНК, которая активирует «ножницы» РНКазу Н, после чего РНК расщепляется. Таким образом, прекращается производство соответствующего белка. И наоборот, синтез белка прекращается за счет блокады мРНК, и рибосома перестает функционировать, что также приводит к ингибированию производства белков, включая вирусы.

Помимо «антисмысловой» терапии существует еще один подход к активации гена, основанный на действии рибозимов против мРНК. В этом случае сама РНК является ферментом, осуществляющим расщепление, и в «ножницах» РНКазе Н нет необходимости. Рибозимы избирательно связываются с соответствующими последовательностями и расщепляют их, используя свои эндогенные «ножницы». Но они могут быть и искусственными и направленными против РНК, которую надо уничтожить. С каждой стороны в качестве небольших ножек прибавляют до семи нуклеотидов, которые образуют боковые стороны участков расщепления с выразительным названием GUN («ружье»), состоящим из названий нуклеотидов G, U и N (где N означает любой из четырех нуклеотидов), представляющих собой триплет для расщепления. Такой подход использовался против РНК онкогена Bcr-Abl, который, как правило, отмечается у пациентов с хронической миелоидной лейкемией. Рибозим такого свойства против ВИЧ в комбинации с другими факторами также является предметом проводимых в настоящее время клинических исследований в Сити-Хоуп[18] (Калифорния) – название клиники говорит само за себя.

Третий общий подход к сайленсингу генов заключается в использовании siРНК. Она состоит из коротких двухцепочечных РНК (длиной примерно 20 аминокислот), разделенных на отдельные цепочки. Одна из них связывается с выбранной РНК-мишенью, а затем активирует «ножницы» ( с его PIWI-РНКазой Н) для вырезания нежелательной РНК.

Все три подхода с самого начала дали повод для больших надежд в части, касающейся разработки соответствующих терапий. А что же сейчас? Имеется большой объем данных относительно механизма «антисмысловой» терапии, рибозимов и siРНК, но нет ни одного разработанного препарата и, конечно же, лекарственных препаратов – лидеров продаж. У всех у них одна и та же проблема: как направить терапевтические нуклеиновые кислоты на специфический сайт-мишень для расщепления в опухолевых клетках, тканях головного мозга, органах. Природой разработана замечательная процедура для достижения этой цели – вирусы! Правы был исследователи, пришедшие к заключению, что нужно попытаться использовать синтезированные или модифицированные вирусы, липосомы, наночастицы или «выпотрошенные» вирусы. На копировании природы основана целая область исследований – бионика. Можно использовать модульный характер вирусов и собрать наиболее ценные вирусные компоненты, «лучшее из мира вирусов», как это назвали авторы, комбинируя гены десятка различных вирусов. Это отличное развлечение в лабораторных условиях, но имеет очень незначительный терапевтический эффект. Мне известен только один такой «антисмысловой» препарат для лечения герпесвируса, а конкретно цитомегаловирусной инфекции глаза. Пациент использует только глазные капли – и никаких вирусов и наночастиц! Первым «антисмысловую» ДНК описал Пол Замечник – «отец “антисмысловой” ДНК». Лишь позднее было признано, что вирусы и бактерии также используют ее в качестве принципа регуляции. Это сделало данный подход еще более привлекательным для биотехнологов – природа создала, а мы можем разработать нечто подобное. Герпесвирусы используют «антисмысловые» нуклеиновые кислоты, чтобы удерживать вирус в латентном состоянии. Кроме того, на этом принципе основано поддержание иммунитета фага Р1 против суперинфекций. Первопроходцами этих исследований были ученые лаборатории Хайнца Шустера Общества Макса Планка в Берлине. Хорошо помню, как в 1994 г. искали белок-репрессор в иммунитете фага Р1, а вместо этого открыли нуклеиновую кислоту. Результаты этой работы опубликованы в журнале .

Неожиданно появились новые возможности в плане использования таких технологий для выключения генов. Полная инактивация гена, «потеря функции» позволяет нам выяснить задачи гена. Нет лаборатории в мире, где бы не использовали такую «антисмысловую» технологию, чтобы понять метаболические пути, развитие заболеваний и рака. Такая технология может использоваться для клеточных культур, в исследованиях на животных, но не в исследованиях с участием людей в качестве добровольцев. И что же в результате? Хорошие исследования, идентификация и «валидация» (подтверждение важной роли) целевых генов.

Кроме того, мы использовали часть ДНК для инактивации ВИЧ, «сайленсер ДНК» вместо сайленсера РНК. ДНК в виде U-образной петли направлена против консервативного участка вирусной РНК в частице и активирует молекулярные «ножницы», вирусную РНКазу Н, что приводит к «суициду» ВИЧ. В 2006 г. в материалах симпозиума в Колд-Спринг-Харбор мы обозначили его как сайленсер ДНК «siДНК». Возможно, это станет защитным средством для женщин как вагинальный микробицид против ВИЧ-инфекций; правда, это долгий и затратный путь.

В настоящее время есть новая технология – четвертая терапевтическая нуклеиновая кислота, выделенная из иммунных систем бактерий. Весь мир увлечен ею!

Бактерии спасают гены от инфицирующего фага путем интеграции его ДНК в их геном. Если схожий фаг проникает в бактерию, его распознает РНК, транскрибированная из первого фага, и механизм разрезания уничтожает новый фаг. Система называется CRISPR/Cas9, где Cas9 – молекулярные «ножницы», нуклеаза, осуществляющая вырезание. Исследователи имитируют такой иммунный ответ путем комбинирования нуклеазы с РНК. РНК называется «направляющая РНК» и имеет две функции: нахождение сайта расщепления с использованием гомологических последовательностей и внесение информации, необходимой для генетических изменений. Кроме того, у РНК есть крючок, на котором держится нуклеаза. Генетические изменения описываются как «правка» («редактирование»). В   была опубликована новость дня – «Правка ДНК». Следует помнить, что компьютерная команда «Правка» означает «изменение». Целевая ДНК вместе с «направляющей РНК» формируют гибрид ДНК–РНК, и при этом ДНК из него вырезается молекулярными «ножницами» Cas9. Они могут вырезать участки ДНК, а концы соединяются клеткой. Или клетка копирует «направляющую РНК» для редактирования. В отличие от других ДНК-модифицирующих технологий, CRISPR может использоваться для изменения специфических генов без «рекомбинации». И это большое преимущество. К тому же до сих пор не существует соответствующих правил или ограничений. В конце 2013 г. и  признали это одним из величайших 10 прорывов в науке. У журналистов сразу же сложилось свое ви?дение: можно удалять гены, редактировать (изменять) вирусы, бактерии, растения, генетические дефекты, лечить заболевания – модифицировать все мыслимые системы на планете, включая человека. Возможны любые желаемые модификации ДНК в живой клетке и вообще в организме животного, а фактически единовременно можно осуществлять большое число изменений – просто скомбинировать желаемые изменения последовательности на длинной «направляющей РНК». Клетка будет их копировать. Практически ежедневно появляются новые выпускаемые в промышленных масштабах наборы для максимального упрощения этой процедуры. Компании предлагают вирусы для транспортировки комплексов в клетки. Мне на электронную почту приходит ежедневно по три таких предложения. Я видела, как в геном свиньи вносилось сразу 62 правки с целью ее «очеловечивания», чтобы можно было без иммунного отторжения трансплантировать сердце и другие органы этого животного пациентам. Любой студент может использовать этот метод и изменять геномы клеток или эмбрионов для получения трансгенных животных – это почти не занимает времени, хотя раньше докторантам требовалось до трех лет напряженной работы, которая не всегда увенчивалась успехом. А сейчас процесс занимает три недели.

Редактирование – обычное явление в биологии, а не «изобретение» Google. Такой же механизм присутствует и в археях. У африканских трипаносом также широко распространены редактирование и генетическая вариабельность. В тканях головного мозга эмбриона человека редактирование происходит в 35 раз чаще, чем у обезьян. Так что это естественный механизм. Можно ли бактерии со множественной устойчивостью к лекарственным средствам снова сделать чувствительными к антибиотикам? В настоящее время это одна из самых насущных задач в мире. Специалист по синтетической биологии Тимоти Лу из Техасского технологического института пытается это сделать, инфицируя бактерии фагами для редактирования, чтобы вернуть бактериям чувствительность к антибиотикам. В частности, мишенями являются биопленки, содержащие несколько слоев не очень активно метаболизирующихся бактерий, для чего осуществляется редактирование фагов. Редактирование с использованием CRISPR/Cas9 – самое новое, широко разрекламированное направление в исследованиях. Меня это тоже захватило. Новшество данного подхода – быстрота и простота. Существует 20 типов Cas-подобных «ножниц», имеющих различные специфические свойства, и некоторые из них даже вырезают одноцепочечную РНК. Как они будут использоваться?

Некоторых ученых беспокоит вопрос о возможном злоупотреблении данным методом. В СМИ уже появились сообщения о появлении «искусственных детей». В начале 2015 г. китайские исследователи модифицировали гены эмбриона человека, но эти эмбрионы не выжили. Тем не менее можно представить себе эксперименты с реальными эмбрионами человека. «Инжиниринг идеального ребенка» – так была озаглавлена статья, опубликованная издательством Массачусетского технологического института. Годовалому ребенку провели соответствующее лечение, чтобы у него мог прижиться трансплантат, который в противном случае отторгся бы. Этот метод не характеризуется 100%-ной точностью. Существуют так называемые «нецелевые» (, или побочные) эффекты, которые могут обусловить развитие побочных явлений и редактирование «не тех» генов. Эта проблема типична для нуклеиновых кислот, ее нужно преодолеть, но задача отнюдь не тривиальная. В начале 2016 г. власти Великобритании одобрили использование в лабораториях человеческого эмбриона примерно недельного возраста (пока число клеток увеличится с четырех до 256) для применения CRISPR-технологии и тестирования роли определенных генов на раннем этапе эмбрионального развития. Затем эти клетки подлежат уничтожению. У мышей мышечную дистрофию Дюшенна (генетическое мышечное заболевание у мальчиков) излечили путем вырезания участка генома с генетическим дефектом. Этические комитеты готовятся оценить эту технологию. Самоограничения исследователей – практика, уже используемая в связи с технологиями рекомбинантных ДНК. Впервые эту тему затронули в 1975 г. на Асиломарской конференции из-за страха перед биоопасностью. В конце 2015 г. комитет Международного саммита по редактированию гена человека выступил с заявлением, в соответствии с которым новая технология редактирования генов не может использоваться для модификации эмбрионов человека в период беременности. Дэвид Балтимор из Калтеха, председательствовавший на саммите, сказал: «Ученые должны проявлять осторожность, так как, если в геном внести изменение, это будет необратимо». По мнению некоторых, заявление слишком мягкое. Ежегодно в мире 8 млн детей рождается с генетическими дефектами. Нуждаются ли они в редактировании, в каких бы то ни было изменениях? Где и когда?

Меня крайне удивило, что в обоих случаях, когда ученые заявили о самоограничениях, используемые методы были основаны на бактериальных иммунных системах: сначала это была бактериальная система защиты, использование «рестрикционных эндонуклеаз», открытых швейцарским ученым Вернером Арбером, что явилось основой рекомбинантной ДНК. В настоящее время это иммунная система CRISPR/Cas9. Бактерии против фагов в равных пропорциях используют обе эти системы защиты. У нас это вызывает трепет и беспокойство. В 1978 г. Арбер получил Нобелевскую премию. Кто станет следующим?

Две молодые дамы очень активно занимаются данной технологией, и обе вошли в шорт-лист кандидатов на получение следующей Нобелевской премии. Одна из них – Эммануэль Шарпантье, назначенная новым директором Общества Макса Планка в Берлине. Джиму Уотсону хотелось узнать о ней больше, и казалось, им движет заинтересованность и немного любопытства! Вторая дама-исследователь – Дженнифер Дудна из Калифорнийского университета в Беркли. Третий – молодой ученый Мартин Йинек из Цюриха – исследовал кристаллическую структуру Cas9. Этот фермент – вариант РНКазы Н – отличается тем, что режет ДНК в гибриде, поэтому его следует назвать ДНКазой Н. Разработкой применения и упрощением данной технологии занимается Фэн Чжан из Массачусетского технологического института. Между Калифорнийским университетом в Беркли, который представил заявки на патент раньше, и Массачусетским технологическим институтом, который представил их позже, но на большее количество применений, развернулась закулисная патентная война. К сожалению, здесь участвуют большие деньги. Компания Bayer инвестировала €300 млн в разработку данной технологии для лечения трех заболеваний – заболевания крови, слепоты и врожденного порока сердца. К этому направлению присоединилось еще три крупные компании, и объем инвестиций намного увеличится. В настоящее время в этом направлении работают десятки тысяч исследователей, и все используют данную технологию. Важно отметить, что метод можно применять для мутирования (редактирования) или инактивации специфических генов без введения ДНК чужеродного организма. На такие «отредактированные» организмы в настоящее время не распространяется ограничительное законодательство, регулирующее ГМО. Копированные, но нерекомбинированные гены были бы менее опасными. Соответствующее обсуждение данного вопроса регуляторными органами уже началось. У этой истории будет продолжение!

Похожие книги из библиотеки