Микробиология ботулизма

Ботулизм – тяжелая форма пищевой токсикоинфекции, связанная с употреблением продуктов, зараженных Clostridium botulinum, и характеризующаяся специфическим поражением центральной нервной системы.

Возбудитель болезни был впервые обнаружен в 1896 г. Э. ван Эрменгемом в остатках колбасы (лат. botulus – колбаса), а также в селезенке и толстой кишке людей, погибших от ботулизма. Это открытие было подтверждено С. В. Констансовым, который выделил C. botulinum из красной рыбы, послужившей причиной отравления.

C. botulinum – довольно крупные полиморфные палочки с закругленными концами, длиной 4 – 9 мкм, диаметром 0,5 – 1,5 мкм, иногда образуются укороченные формы; располагаются беспорядочно, иногда парами или в виде коротких цепочек; в старых культурах могут образовывать длинные нити; грамположительны, подвижны, имеют перитрихиальные жгутики. Капсулы не образуют, споры овальные, располагаются субтерминально, придавая палочке форму, напоминающую теннисную ракетку (рис. 106). Споры в культурах появляются через 24 – 48 ч от начала инкубации. C. botulinum не размножается в продуктах при кислой реакции (рН 3,0 – 4,0) и при концентрации NaCl выше 10 %.

C. botulinum образует 8 типов токсинов: A, B, C1, C2, D, E, F, G, различающихся по антигенной специфичности. Соответственно различают 8 типов возбудителя, одним из важных признаков которых является наличие или отсутствие протеолитических свойств. Эти свойства определяются по способности гидролизовать казеин и продуцировать H2S. В соответствии с этим различают протеолитическую группу, к которой относятся все штаммы типа А и часть штаммов B и F, и непротеолитическую группу, к которой относят все штаммы типа Е и некоторые штаммы типов B и F. Возбудители типов С и D занимают промежуточное положение между этими группами, так как часть из них продуцирует протеолитические ферменты, но многие штаммы С и D не образуют их (табл. 48). Серотип G отличается от всех других серотипов тем, что он, обладая протеолитическими свойствами, не ферментирует углеводы.

Рис. 106

Рис. 106


— AD —

. Clostridium botulinum

Чистая культура

Таблица 48

Дифференциальные признаки протеолитических и непротеолитических штаммов C. botulinum

Микробиология ботулизма

Примечание. (+) – признак положительный; ( – ) – признак отрицательный; надстрочный знак ( – ) – некоторые штаммы желатин не гидролизуют. а Этот серотип выделен в самостоятельный вид C. argentinense.

Некоторые особенности различных типов C. botulinum. Тип А и протеолитические штаммы типов B, C, D и F – прямые или слегка изогнутые палочки длиной 4,4 – 8,6 мкм, диаметром 0,8 – 1,3 мкм, подвижны (перитрихи). Споры овальные, субтерминальные. Обильно растут на питательном бульоне. На кровяном агаре с 0,5 – 1,0 % глюкозы образуют гладкие или шероховатые колонии диаметром 3 – 8 мм, окруженные зоной гемолиза. В начале роста колонии очень мелкие, блестящие, в виде капелек росы. Затем они увеличиваются, становятся сероватыми с ровными или неровными краями. В агаре столбиком колонии дискообразные или в виде «пушинок». Молоко пептонизируют. Температурный оптимум для роста 30 – 40 °C. Содержание Г + Ц в ДНК – 26 – 28 мол %.

Тип Е и непротеолитические штаммы типов В и F. Прямые палочки, диаметр 0,3 – 0,7 мкм, длина 3,4 – 7,5 мкм; грамположительны, но в старых культурах становятся грамотрицательными, подвижны (перитрихи). Споры овальные, субтерминальные. Обильный рост на среде Китта – Тароцци с газообразованием. Колонии на кровяном агаре 1 – 3 мм в диаметре, с неровными краями, матовой поверхностью, мозаичной структурой, с зоной гемолиза. Некоторые штаммы типа Е не гидролизуют желатин. Молоко свертывают, но не пептонизируют. Температурный оптимум для роста 25 – 37 °C. Содержание Г + Ц в ДНК составляет 26 – 28 мол %.

Непротеолитические штаммы типов C и D. Прямые палочки, диаметр 0,5 – 0,7 мкм, длина 3,4 – 7,9 мкм, подвижные (перитрихи), споры овальные, субтерминальные; желатин гидролизуют, молоко не свертывают и не пептонизируют; рост на среде Китта – Тароцци с умеренным газообразованием. На кровяном агаре колонии круглые, с неровными краями, слегка приподняты, гладкие, серовато-белого цвета, полупрозрачные, окружены зоной гемолиза. Температурный оптимум для роста 30 – 37 °C, содержание Г + Ц в ДНК – 26 – 28 мол %.

Тип G. Прямые палочки, диаметр 1,3 – 1,9 мкм, длина 1,6 – 9,4 мкм, подвижны (перитрихи), споры овальные, субтерминальные, грамположительны. На кровяном агаре колонии круглые, диаметром 0,5 – 1,5 мм, с ровными краями, приподнятые, полупрозрачные, серые, гладкие, с блестящей поверхностью; на среде Китта – Тароцци рост умеренный, без ферментации глюкозы; молоко пептонизируют медленно. Температурный оптимум для роста 30 – 37 °C. Обнаружен в почве. Случаи заболевания людей, вызванных этим типом, не известны.

Резистентность. Длительное сохранение C. botulinum в природе и в различных пищевых продуктах связано с их спорообразованием. Споры сохраняются в почве долгое время, а при благоприятных условиях в летнее время могут прорастать и размножаться. Они хорошо переносят низкие температуры (не погибают даже при –190 °C). В высушенном состоянии сохраняют жизнеспособность десятилетиями. Споры устойчивы и к нагреванию (особенно типа А). Споры типов А и В переносят кипячение в течение 5 ч, при температуре 105 °C погибают через 1 – 2 ч, при 120 °C – через 20 – 30 мин. Встречаются штаммы, споры которых переносят температуру 120 °C в течение нескольких часов. Споры C. botulinum устойчивы ко многим бактерицидным веществам: 20 % раствор формалина убивает их через 24 ч; этиловый спирт – через 2 мес.; 10 %-ная HCl убивает их лишь через 1 ч.

Токсины C. botulinum также весьма устойчивы к действию физических и химических факторов. Они не разрушаются протеолитическими ферментами кишечного тракта. В кислой среде (рН 3,5 – 6,8) они более устойчивы, чем в нейтральной или щелочной среде, разрушаются от действия 2 – 3 %-ной щелочи, но высокие концентрации NaCl в пищевых продуктах их не разрушают; в консервах токсины сохраняются длительное время. Токсины C. botulinum обладают и определенной термоустойчивостью: при 58 °C разрушаются через 3 ч; при 80 °C – через 30 мин; а при 100 °C – в течение нескольких минут. Наиболее устойчивы токсины типа С, менее устойчивы токсины типов D и E, а токсины типов А и В занимают промежуточное положение. Устойчивость токсинов к высокой температуре зависит от вида продукта, его рН и других условий. В частности, при наличии жиров, высокой концентрации сахарозы устойчивость токсинов к высокой температуре возрастает.

Факторы патогенности. Главный фактор патогенности возбудителя ботулизма – экзотоксины. Хотя они отличаются по антигенным свойствам, их биологическая активность одинакова. Все они – варианты одного нейротоксина. Антигенная специфичность и летальная активность определяются различными детерминантами экзотоксина. Токсины всех типов продуцируются в виде токсических белковых комплексов (прогениторных токсинов). В зависимости от молекулярной массы и структуры эти комплексы делят соответственно константам седиментации на 3 группы: 12S– (300 кД), 16S– (500 кД) и 19S– (900 кД) токсины. Недавно у типов А и В обнаружены сверхтоксичные сверхкомплексы токсинов.

12S-токсины (М-токсины) состоят из молекулы нейротоксина, ассоциированной с молекулой нетоксического белка, который не обладает гемагглютинирующими свойствами. 16S-токсины (L-токсины) – структуры, состоящие из М-комплекса и нетоксического белка, который отличается от белка М-комплекса и обладает гемагглютинирующими свойствами. 19S-токсины (LL-токсины) – наиболее крупные структуры, включаюшие в себя нейротоксин и нетоксический белок со свойствами гемагглютинина.

Клостридии ботулизма типа А могут продуцировать токсические комплексы трех вариантов: M, L и LL, типов B, C и D – в виде L– и M-токсинов, а типов E и F – только в виде М-токсинов. Таким образом, одна и та же культура C. botulinum может продуцировать несколько типов токсических комплексов. Функции нетоксических негемагглютинирующих, как и гемагглютинирующих белков (их идентифицировано три типа: 15 кД, 35 кД и 70 кД), пока не установлены. Нейротоксические компоненты любого серотипа ботулинических токсинов и любого типа токсического комплекса имеют сходную структуру и биологические свойства. Они синтезируются в виде единой полипептидной цепи с м. м. 150 кД (7S-токсин), которая не обладает значительной токсической активностью. Эта полипептидная цепь превращается в активный нейротоксин только после ее разрезания бактериальной протеазой или протеазами кишечного тракта человека. В результате точечного гидролиза возникает структура, состоящая из двух связанных между собой дисульфидными связями цепей – тяжелой, с м. м. 100 кД (Н-цепь), и легкой, с м. м. 50 кД (L-цепь). Н-цепь ответственна за прикрепление нейротоксина к рецепторам мембраны клеток, а L-цепь осуществляет специфическое блокирующее действие нейротоксина на холинергическую передачу возбуждения в синапсах. Токсины типов С1 и С2 отличаются друг от друга не только серологически, но еще и тем, что токсина С2 вегетативные формы культур не образуют. Он образуется лишь в период спорообразования, а его активация обеспечивается микробной протеазой.

Способность возбудителя ботулизма продуцировать протеолитические ферменты играет важную роль в токсинообразовании. Протеолитические группы возбудителей обеспечивают активацию протоксинов своими эндогенными протеазами, а активация нейротоксинов, продуцируемых непротеолитическими вариантами серотипов C. botulinum, осуществляется экзогенным путем, т. е. с помощью протеаз желудочнокишечного тракта при заражении или in vitro – трипсином.

Помимо выраженной нейротоксической активности, различные типы C. botulinum обладают лейкотоксической, гемолитической и лецитиназной активностью. Особенность лейкотоксина заключается в том, что он подавляет фагоцитоз без разрушения лейкоцитов. Различные сроки накопления в культуральной среде лейкотоксинов, гемотоксинов и лецитиназы при инкубации C. botulinum указывают на то, что они имеют, по-видимому, разную химическую природу.

Локус генов токсических комплексов содержит гены нейротоксинов (bont), гены нетоксического негемагглютинирующего белка (ntnh), гены гемагглютининов (ha+ или ha) и ген botR, продукт которого выполняет роль позитивного регулятора.

Особенности эпидемиологии. Естественной средой обитания C. botulinum является почва, откуда они попадают в воду, на пищевые продукты, фураж, в кишечник человека, млекопитающих, птиц и рыб, где размножаются. В ряде стран мира (США, Канада и др.) ботулизм существует в виде природных очагов: в местах, где почва, растения и вода содержат много C. botulinum, неоднократно наблюдалась массовая гибель диких водоплавающих птиц и иных животных (ондатры, лягушки и др.), играющих важную роль в эпидемиологии ботулизма. Установлено носительство C. botulinum в кишечнике у лошадей, рогатого скота, свиней, кур, грызунов. Загрязняя своими испражнениями продукты, фураж, почву, они способствуют широкому обсеменению клостридиями окружающей среды.

Заражение красной и частиковой рыбы возбудителем ботулизма может быть эндогенным – из их кишечника, и экзогенным – из внешней среды (при неправильных транспортировке и хранении).

Все сельскохозяйственные продукты, загрязненные почвой, испражнениями человека и животных, могут быть заражены возбудителями ботулизма и стать причиной заболевания человека.

Ботулизм встречается во всех регионах Земного шара, но чаще регистрируется в странах, где население употребляет большое количество различных консервированных продуктов. В каждой стране источником отравления служат консервы, пользующиеся наибольшим спросом: в Германии, Франции и других европейских странах – мясные консервы, колбаса, ветчина и т. п.; в США – растительные консервы; в России – рыба и рыбные консервы. Ботулизм не контагиозен. Заболевание наступает лишь при употреблении пищи, содержащей возбудителя и его токсины. Поскольку C. botulinum – строгий анаэроб, наилучшие условия для его размножения и продукции токсина создаются в консервированных продуктах, куда споры могут попасть с частичками почвы. Они могут выдерживать термическую обработку консервов, а затем прорастать и продуцировать токсин, чему способствует длительное хранение консервов. Заболеваемость ботулизмом невысока, он встречается чаще как спорадическое заболевание. Однако известны и групповые вспышки, например вспышка в 1933 г. в городе Днепропетровске, когда в результате отравления кабачковой икрой заболело 230 человек, 26 из них умерли. Крайне редко заражение происходит при ранениях.

Особенности патогенеза и клиники. Ботулизм протекает как токсикоинфекция. Организм поражается не только токсином, содержащимся в пищевом продукте, но и токсином, который образуется в пищеварительном тракте и тканях в связи с проникновением туда возбудителя. Люди чрезвычайно чувствительны к ботулиническим токсинам типов A, B, C, E и F. Заболевания наблюдались даже тогда, когда человек брал в рот зараженный продукт, но не проглатывал его. Смертельная доза токсина для человека составляет 1 нг/кг массы тела. Ботулинический токсин быстро всасывается в желудке и кишечнике, проникает в кровь и избирательно действует на ядра продолговатого мозга и ганглиозные клетки спинного мозга. Следует отметить, что, попадая в пищеварительный тракт человека или животного, клостридии ботулизма размножаются, проникают в кровь и оттуда во все органы, продуцируя при этом токсины. Инкубационный период у людей варьирует от двух часов до 10 дней, но чаще всего он составляет 18 – 24 ч. Чем больше инфицирующая доза, тем короче инкубационный период и тем тяжелее протекает заболевание.

Клиническая картина ботулизма обычно складывается из сочетания различных мионеврологических синдромов, из которых раньше всего проявляется офтальмоплегический: у больного нарушается аккомодация, неравномерно расширяются зрачки, появляется косоглазие, двоение в глазах, опущение век, а иногда и слепота. Эти симптомы связаны с поражением глазодвигательных нервов. Затем присоединяется парез мускулатуры языка (афония), глотание затрудняется, мышцы шеи, туловища и кишечника ослабевают (парезы, запоры, метеоризм), наблюдается выделение густой тягучей слизи. Температура может быть нормальной, иногда повышается. Сознание сохраняется. Как правило, никаких острых явлений воспаления со стороны желудочно-кишечного тракта не отмечается. В заключительной стадии болезни основную роль играет расстройство дыхания, смерть наступает от паралича дыхания и сердца. Летальность составляет 35 – 85 %.

Постинфекционный иммунитет. Перенесенное заболевание, очевидно, оставляет типоспецифический антитоксический иммунитет, перекрестный иммунитет не формируется. Продолжительность и напряженность постинфекционного иммунитета и роль в нем антимикробных антител и фагоцитов изучены недостаточно.

Лабораторная диагностика. Материалом для исследования служат: от больного – промывные воды желудка, испражнения, кровь, моча, рвотные массы; от трупа – содержимое желудка, тонких и толстых кишок, лимфатические узлы, а также головной и спинной мозг. Исследованию подвергают и продукт, послуживший причиной отравления. Исследования проводят с целью обнаружения и идентификации C. botulinum или, чаще всего, с целью обнаружения ботулинического токсина и установления его серотипа. Для выделения культуры C. botulinum материал засевают на плотные среды и накопительную среду Китта – Тароцци (часть пробирок при этом прогревают при температуре 85 °C в течение 20 мин для уничтожения неспорогенных бактерий). Из жидких культур после инкубирования делают посевы на плотные среды с целью получения изолированных колоний, а затем и чистых культур, которые идентифицируют по морфологическим, культуральным, биохимическим и токсигенным свойствам. Для обнаружения ботулинического токсина в исследуемом материале или в фильтрате полученной культуры можно использовать следующие три способа.

1. Биологическая проба на мышах. Для этого берут не менее 5 мышей. Одну из них заражают только исследуемым материалом, а каждую из остальных четырех – смесью материала с 200 АЕ антитоксической сыворотки соответствующего типа – А, В, С и Е. Смесь при комнатной температуре выдерживают 40 мин для нейтрализации токсина антитоксином. При наличии в исследуемом материале ботулинического токсина погибают все мыши, кроме той, которой была введена смесь материала с антитоксической сывороткой, нейтрализовавшей действие гомологичного типа токсина.

2. Использование РПГА с антительным диагностикумом, т. е. эритроцитами, сенсибилизированными антитоксинами соответствующих типов.

3. Высокочувствительный и специфический метод обнаружения ботулинического токсина основан на его способности подавлять активность фагоцитов. В присутствии соответствующей антитоксической сыворотки лейкотоксическое свойство токсина нейтрализуется.

Лечение. Наиболее эффективным методом лечения ботулизма является раннее применение антитоксических сывороток. Пока не установлен тип токсина, вызвавшего ботулизм, больному вводят внутримышечно по 10 000 МЕ антитоксической сыворотки типов А, С и Е и 5000 МЕ сыворотки типа В (всего 35 000 МЕ). В первые сутки сыворотку вводят повторно через каждые 5 – 10 ч, в тяжелых случаях – внутривенно. Всем лицам, которые употребляли пищу, ставшую причиной отравления, но не заболели, с профилактической целью вводится антитоксическая сыворотка по 2000 МЕ тех же типов. После установления типа токсина вводят только гомологичную антисыворотку. С целью стимулирования выработки активного иммунитета больному вводят также анатоксины типов А, В, С и Е, а после определения типа токсина только гомологичный анатоксин. Промыванием желудка и дачей слабительного добиваются скорейшего удаления токсина и возбудителя из кишечника. Серотерапию дополняют антибиотикотерапией, а также симптоматическим и общеукрепляющим лечением.

Профилактика. Для создания искусственного антитоксического иммунитета против ботулизма получены анатоксины, однако широкого применения они не нашли. В основе профилактики ботулизма лежит строгое соблюдение санитарно-гигиенического режима при обработке продуктов на предприятиях пищевой промышленности, особенно связанных с изготовлением консервов, ветчины, колбас, а также при копчении, солении рыбы и приготовлении из нее балыков. Изготовленные консервы после термической обработки должны подвергаться термостатному контролю (их выдерживают в термостате при 37 °C в течение определенного времени): клостридии, сохранившиеся в консервах, вызывают бомбаж (вздутие) банок, а содержимое их издает запах прогорклого масла. Такие консервы подлежат изъятию и тщательному бактериологическому исследованию. Для соления рыбы необходимо использовать крепкие солевые растворы – тузлуки, содержащие 10 – 12 % NaCl. Особенно опасными могут быть консервы домашнего приготовления, прежде всего грибные, изготовленные без соблюдения необходимого режима.

Похожие книги из библиотеки

Сам себе Су Джок доктор

В книге подробно, доступным и живым языком описаны и проиллюстрированы простые способы оказания само- и взаимопомощи при наиболее распространенных заболеваниях без использования лекарств. Красота и эффективность, простота и безопасность лечебного метола Су Джок, разработанного южнокорейским профессором Пак Чжэ By, привлекают к нему внимание людей самых разных профессий во многих странах мира. Книга рассчитана на широкий круг читателей, на тех, кому небезразлично собственное здоровье. Если вы решили сказать «нет!» унынию, болезням, старости, то эта книга для вас!

Японский массаж, который помог Мэрилин Монро и Мухаммеду Али

Очень простой и потрясающе эффективный метод оздоровления существует в Японии – шиацу. Этот метод признан и рекомендован врачами и Министерством здравоохранения Японии. Все что нужно для этого массажа – ваши руки и интуиция! Перед вами книга, которая расскажет, как освоить методику шиацу и применить на благо себя и своим близким. Приемы шиацу безопасны и действенны. С помощью атласов и описаний, помещенных в этой книге, вы научитесь собственными пальцами нащупывать первопричину боли, а не только ее поверхностный сигнал. И сможете напрямую работать с нужной зоной.

Восстановление щитовидной железыРуководство для пациентов

Перед вами уникальная книга. Это результат практической и исследовательской деятельности её автора — доктора Ушакова Андрея Валерьевича. Книга последовательно проводит читателя-пациента от понимания роли щитовидной железы в организме и основ диагностики, к механизмам развития заболеваний и возможности восстановления. В этой книге доктор Ушаков представляет собственные взгляды на основу патологических процессов в щитовидной железе. Впервые публикуются сведения о сущности и изменениях узлов щитовидной железы. Впервые раскрываются основы обратимости аутоиммунных, узловых и диффузных процессов. Эта книга — больше, чем консультация. Это искреннее откровение профессионала. Это доступное пониманию пациентов руководство! Иллюстрации и оформление А. В. Ушаков, 2008

Спортивное питание: Что есть до, во время и после тренировки

Каким бы спортом вы ни занимались – бодибилдингом, бегом, плаванием или велоспортом, – вы не сможете добиться результатов без грамотно составленной диеты. В это сложно поверить, но успехи и даже спортивные рекорды возможны и без специальных витаминных добавок, протеиновых батончиков и коктейлей. Привычные продукты, оказывается, могут быть основой диеты успешного спортсмена. Главное – разобраться в том, что, когда и в каком количестве надо есть в зависимости от конкретно ваших спортивных целей. Рене Макгрегор, дипломированный диетолог и спортсмен со стажем, предлагает готовые варианты планов питания для нескольких видов спорта и тренировок разной интенсивности. В ее книге вы найдете более 100 рецептов вкусных, полезных и несложных блюд, которые обеспечат ваш организм всеми необходимыми питательными веществами.