1.2. Перспективы витаминокоррекции кардиопатологии

Исходя из экспериментальных и клинических данных, кажется совершенно очевидным, что альтернатива осуществления специфического (коферментного) механизма действия витаминов сохраняется только для гиповитаминозного состояния [18]. В случае, когда позитивный эффект витаминотерапии проявляется при нормальном и тем более повышенном исходном содержании соответствующих коферментов в тканях, вероятно, можно говорить лишь о каком-то опосредованном действии экзогенного витамина, что автоматически ставит вопрос о целесообразности его применения в данной ситуации. Действительно, зачем применять витамин, если тот же лечебный результат можно получить с помощью иных средств, возможно, еще более эффективных? С другой стороны, знание особенностей конкретного механизма опосредования витаминного действия позволяет оценить его недостатки или преимущества перед альтернативными способами лечения, что дает возможность обоснованно и целенаправленно эксплуатировать его «побочные» эффекты для устранения патологии, не связанной с развитием вторичных гиповитаминозов [17, 18].

Тиамин. Согласно существующим представлениям, витамин В1 играет важную роль в энергообеспечении сократительной функции сердечной мышцы и обновлении ее клеточных структур [144]. Эти представления базируются на допущении, что ТДФ через стимуляцию окисления субстратов в пируват– и ?-кетоглютаратдегидрогеназных реакциях ЦТК способен усиливать генерацию энергии в сердце, а через транскетолазу может контролировать синтез рибозо-5-фосфата и восстановительных эквивалентов в ПФП, необходимых для удовлетворения пластических нужд миокарда [112, 145]. Отсюда, на первый взгляд, кажется совершенно логичным предложение использовать тиамин прежде всего для профилактики недостаточности сердца в ситуациях, сопровождающихся компенсаторной гипертрофией миокарда, когда в органе резко усиливаются процессы энергопотребления и пластики. Диапазон лечебного применения витамина здесь мог быть чрезвычайно обширным, так как клиническим эквивалентом подобного состояния являются различные пороки сердца, сопровождающиеся сужением клапанных отверстий, стеноз аорты, компенсаторная гиперфункция миокарда вследствие выключения части органа из акта сокращения при инфаркте и т. д.

Хорошо известно, что необходимой предпосылкой проявления специфического действия витамина на уровне витаминзависимых ферментов является состояние гиповитаминоза, т. е. дефицит кофермента в тканях. Если это условие выполняется, то показания к применению тиамина становятся очевидными. Оказывается, что в процессе развития компенсаторной гипертрофии мышцы сердца уровень ТДФ в ней не уменьшается, а увеличивается. Такие данные получены при экспериментальном стенозе аорты [145], инфаркте миокарда [112] и др. Отмечено увеличение содержания витамина в скелетных мышцах и сердце животных, совершавших усиленную работу [162]. При этом скорость накопления тиамина в сердце с самого начала опыта соответствует темпу нарастания его массы и продолжает повышаться в течение некоторого времени даже после того, как мышца сердца уже перестает увеличивать свои размеры [145]. По всей вероятности, этот процесс обеспечивается за счет осуществления механизма перераспределения тиамина из других тканей. Последнее обстоятельство заставляет усомниться в необходимости дополнительного введения витамина в тех случаях, когда собственные каналы витаминной регуляции метаболизма в сердце полностью задействованы «эндогенным» коферментом. Рассчитывать на возможность реализации специфической активности экзогенного тиамина в принятых условиях, очевидно, не приходится, поскольку транскетолаза и, вероятно, витаминзависимые дегидрогеназы ЦТК в гипертрофирующемся сердце уже и без того активированы [358].

Кроме того, нужно иметь в виду, что сама исходная посылка о возможности поддержания тиамином пластики и энергообразования в сердце встречает возражения. Дело в том, что в этом органе ПФП в силу своей сравнительно малой мощности, очевидно, не может рассматриваться как единственный, а тем более основной поставщик пентоз, необходимых для синтеза нуклеотидов и нуклеиновых кислот. Ранее мы уже обращали внимание на это обстоятельство, подчеркивая, что миокард, по-видимому, удовлетворяет свои потребности в пентозах за счет других органов и (или) пищи. Отсюда, вряд ли правильно будет связывать с тиамином какие-то особые надежды в смысле эффективной реализации его кардиотропной активности в принятых условиях. Установлено, что при гипертрофии сердца без нарушения кровообращения всегда отмечается значительная гипертрофия коры надпочечников. Это может свидетельствовать о том, что в ответ на изменение работы сердца в стадии компенсаторной перестройки функции миокарда одной из приспособительных реакций является гиперактивация надпочечников [79].

В последней связи важно подчеркнуть, что компенсаторная гипертрофия сердца, т. е. активация синтеза сократительных белков в миокарде, имеет место на фоне гиперкортицизма. Хорошей иллюстрацией данного тезиса является повышение удельного содержания белка в сердце крыс в период весеннего всплеска стероидогенеза. Не исключено, что кортикостероиды способствуют притоку в сердце не только энергетических субстратов (за счет активации липолиза в жировой ткани и глюконеогенеза в печени), но также компонентов синтеза нуклеиновых кислот и белка (аминокислот, рибозо-5-фосфата и др.), освобождающихся при деструкции лимфоидной ткани. Известно, что энергия, необходимая для поддержания активированного протеиносинтеза в гипертрофирующемся сердце, освобождается при окислении различных субстратов [144]. Так, при гипертиреозе увеличение белковой массы сердца происходит на фоне преимущественной утилизации липидов [43], а в аварийную стадию компенсаторной гипертрофии при стенозе аорты миокард использует в основном продукты распада углеводов [96].

Кроме того, для этих целей в какой-то степени пригодны лактат, пируват и кетоновые тела [172]. Степень использования сердцем различных субстратов определяется, главным образом, их концентрацией в крови и уровнем оксигенации миокарда [287]. Благодаря высокой степени васкуляризации мышца сердца всегда снабжается кислородом адекватно ее работе [172]. При усилении сократительной функции сердечной мышцы кровоток в ее сосудах увеличивается в 4–5 раз [96, 172], в результате чего транспорт кислорода обычно перекрывает возросшие потребности в нем дыхательных систем миокарда. Об этом говорит снижение артериовенозной разности гипертрофирующегося миокарда по кислороду [96]. В случае выраженной гипертрофии сердце действует как «кислородная ловушка», способная захватывать до 27 % (!) всего потребляемого организмом кислорода [258]. Гарантированный функциональный аэробиоз сердечной мышцы позволяет ей утилизировать любые субстраты с максимальным энергетическим выходом. Поэтому переключение на преимущественное окисление того или иного субстрата, очевидно, не имеет принципиального значения для энергообеспечения пластики миокарда, при условии достаточного снабжения его кислородом. Отсюда ясно, что изменение субстратного профиля крови в результате витаминного (в том числе опосредованного гормонами) воздействия само по себе вряд ли способно как-то повлиять на пластику гипертрофирующегося сердца, которое в принятых условиях адекватно обеспечено энергией.

Для поддержания интенсифицированного протеино-синтеза здесь, по-видимому, более важен усиленный приток с кровью строительного материала – компонентов белкового и нуклеотидного обменов. Показано, что увеличение концентрации [14С]-аминокислот в среде инкубации значительно стимулирует включение метки в белки различных тканей [304]. Следовательно, для пластики миокарда будут иметь определенное значение все факторы, способствующие мобилизации тканевых аминокислот и нуклеотидных фрагментов. Не исключено, что в этом отношении позитивную роль могут играть, прежде всего, кортикостероиды. Давнее представление о катаболическом действии этих гормонов на мышечную ткань, базирующееся в основном на результатах исследования азотистого баланса организма, а также мочевой экскреции аминокислот и других продуктов белкового происхождения при гиперкортицизме, сейчас оспаривается многими авторами. Однако ни один из этих фактов, ни их совокупность не могут служить основанием для подобного утверждения, так как не исчерпывают сути вопроса и не исключают возможности выделения аминокислот из других тканей. Изотопными методами прямо показано, что глюкокортикоиды не влияют на скорость катаболизма мышечных белков и не высвобождают тканевые метаболиты из поперечнополосатой мускулатуры [110].

Таким образом, основным мобильным источником свободных аминокислот при гиперкортицизме остаются лимфоидная и соединительная ткани, подвергающиеся деструкции под влиянием гормонов коры надпочечников. Причем первая в этом случае может рассматриваться как главный поставщик не только предшественников биосинтеза белка, но и нуклеотидов, поскольку удаление селезенки резко снижает выделение с мочой метаболитов нуклеиновых кислот в ответ на нагрузку кортикостероидами [238]. Принципиальная возможность утилизации миокардом экстракардиальных компонентов белкового и нуклеинового обменов в условиях гиперкортицизма доказывается четкой временной корреляцией уменьшения содержания пуриновых нуклеотидов и кислоторастворимых соединений рибозы в селезенке с накоплением их в сердечной мышце после введения гидрокортизона [154]. По-видимому, сердечная мышца способна наилучшим образом использовать ситуацию гиперкортицизма, который имеет место в период резкого увеличения ее сократительной функции. Следовательно, можно думать, что все средства, снижающие стероидогенную реакцию в принятых условиях, будут в какой-то степени препятствовать компенсаторной перестройке структурной организации миокарда в ответ на увеличение объема его работы.

Все это в полной мере относится и к тиамину. В свете известных фактов о гипертрофии сердца у авитаминозных по витамину В1 животных [269] регуляторная роль тиамина в пластике миокарда представляется весьма проблематичной. Наиболее ярко взаимосвязь уровня физиологической функции миокарда с активностью протеино-синтеза в нем продемонстрирована опытами [286] с перфузией изолированных сердец морской свинки смесью аминокислот в условиях искусственной перегрузки левого желудочка (дозированное сужение аорты). Уже через 1 ч после начала перегрузки рибосомы, выделенные из мышцы левого желудочка, обладают резко увеличенной способностью включать в белок меченые аминокислоты (лизин, фенилаланин и лейцин) in vitro. Особая доказательность последних данных в смысле предметного «привязывания» регуляторных координат эффекта состоит в том, что они получены при моделировании процесса гипертрофии миокарда на изолированном сердечно-сосудистом препарате.

Интенсивность функционирования структур того или иного органа играет важную роль в регулировании новообразования белка его клетками. Считается, что количество выполняемой специализированной функции является одновременно детерминантой активности генетического аппарата и физиологической константой, сохраняющейся на постоянном уровне, благодаря своевременным изменениям работы белоксинтезирующей системы. Ф. Меерсон сформулировал представление о том, что взаимосвязь «ИФС ? активность генетического аппарата клетки» составляет основу механизма компенсаторной гипертрофии миокарда, где роль возбуждающего геном фактора отводится так называемым «метаболитам изнашивания» функциональных структур, которые предположительно способны дерепрессировать соответствующие гены [96].

Таким образом, анализ вышеприведенного материала позволяет заключить, что сердечная мышца в условиях адекватного кислородного обеспечения сравнительно легко адаптируется к изменению объема ее специфической функции. Необычайно обширный диапазон приспособительных возможностей сердца к функциональным перегрузкам, очевидно, обеспечивается его удивительной способностью к утилизации любых энергетических субстратов [330]. Ввиду последнего обстоятельства попытки вмешаться в данный процесс с целью его коррекции (в частности, витаминами) выглядят недостаточно обоснованными. А если взять противоположную ситуацию, когда сердце или какая-то его часть находятся на голодном кислородном пайке – будет ли в этом случае применение тиамина или никотиновой кислоты целесообразным? Клиническим эквивалентом такого состояния являются разные формы ишемической болезни сердца.

Известно, что при ишемии сердца субстратная ориентация пораженной ткани изменяется. В эксперименте на собаках показано, что после перевязки малых ветвей основных стволов коронарных артерий потребление глюкозы в ишемизированных участках миокарда увеличивается по отношению к потреблению свободных жирных кислот, гликоген распадается, а лактат постепенно перестает утилизироваться [288]. Поскольку аэробные процессы полностью не блокировались (продолжалось окисление глюкозы и частичное окисление свободных жирных кислот), можно полагать, что при таком варианте воспроизведения ишемии в пораженном участке миокарда имела место не полная, а частичная гипоксия. Высокий уровень насыщения кислородом венозной крови, оттекающей от зоны ишемии, относительно удовлетворительный уровень напряжения кислорода в субэпикардиальных (но не субэндокардиальных) слоях также говорят за то, что непосредственные изменения метаболизма в области ишемии обусловлены именно гипо-, а не аноксией. При ужесточении ситуации (моделированием аноксии) в миокарде осуществляется полный переход от аэробного метаболизма с использованием глюкозы и жирных кислот в качестве энергетического материала к анаэробным процессам гликолиза [212]. В острый период инфаркта миокарда уровень свободных жирных кислот и глюкозы [200] в плазме резко возрастает. По идее, увеличение концентрации энергетических субстратов в крови, омывающей участки ишемированной ткани, должно способствовать выживанию клеток этой зоны. Однако у некоторых больных эта реакция обычно настолько выражена, что перестает быть оптимальной.

Гиперлипемия и гипергликемия при инфаркте миокарда являются следствием развития неспецифического адаптационного синдрома – стресса, протекающего на фоне выраженного инсулинового дефицита. Снижение секреции инсулина в остром периоде инфаркта миокарда было обнаружено с помощью нагрузок глюкозой и пробой с внутривенным введением толбутамида [335]. Степень инсулиновой недостаточности, выявляемая этими пробами, положительно коррелирует с тяжестью заболевания и наличием признаков кардиогенного шока [335]. Исходя из того, что при дефиците инсулина экстракция сердечной мышцей глюкозы из крови в целом снижена, можно легко допустить, что ишемизированные участки миокарда в этом случае испытывают существенный субстратный голод, так как в отличие от неповрежденных частей сердца не могут утилизировать в полной мере липиды. Отсюда понятно, почему в остром периоде инфаркта миокарда рекомендуют вводить инсулин вместе с глюкозой [116]. С этих же позиций удовлетворительное объяснение находят попытки использовать в указанных целях инсулиноподобное действие тиамина [162].

Поскольку потребление сердечной мышцей липидов является функцией их концентрации в крови [43], т. е. фактически не ограничено механизмами транспорта, а потребление глюкозы лимитируется напряженностью процесса ее трансмембранного переноса, становится очевидным, что in vivo скорее всего имеет место экспоненциальное соотношение между увеличением пропорции свободные жирные кислоты: глюкоза в плазме и поступлением первых в саркосомы. Реципрокные взаимоотношения между утилизацией субстратов липидного и углеводного происхождения на уровне периферических тканей регламентируются идеей существования глюкозо-жирно-кислотного цикла, предложенной Рэндлом и др. [299]. В этом смысле сердце, очевидно, не является исключением, так как имеются данные, что свободные жирные кислоты подавляют гликолиз и окисление глюкозы в миокарде [299]. У собак при распространенной ишемии миокарда, несмотря на снижение коронарного кровотока, наблюдается пропорционально большее поглощение свободных жирных кислот по сравнению с поглощением глюкозы и пирувата и потреблением миокардом кислорода [301]. Совершенно очевидно, что в принятых условиях свободные жирные кислоты будут скорее накапливаться, чем окисляться. Жировая инфильтрация ишемизированного и инфарктного миокарда уже давно описана [116], а в настоящее время экспериментально доказано, что между степенью повышения концентрации свободных жирных кислот в артериальной крови и накоплением триглицеридов в гипоксическом миокарде существует прямая зависимость.

Считается, что депонирующиеся жирные кислоты отрицательно влияют на ишемизированную сердечную мышцу, снижают ее тонус, уменьшают коронарный кровоток [116], ухудшают окислительный метаболизм в митохондриях [96], нарушают сократительную функцию миокарда [188] и т. д. Характерно, что кардиотропные эффекты глюкозы при ишемии сердца, как правило, имеют противоположное направление. Глюкоза улучшает питание миокарда, предотвращает потерю калия ишемизированными тканями и уменьшает возможность развития аритмии, может поддерживать потенциал действия и т. д. [116]. Имеются данные, что после нагрузки глюкозой уровень свободных жирных кислот в крови больных острым инфарктом миокарда снижается, а функция сердца улучшается [282]. Если реципрокные взаимоотношения между субстратами липидного и углеводного происхождения в сердце действительно могут регулироваться их концентрацией в крови [116], то легко допустить, что все факторы, способствующие утилизации глюкозы, должны иметь благоприятный эффект [98], а все факторы, увеличивающие потребление свободных жирных кислот, будут оказывать повреждающее действие на ишемизированный миокард. В соответствии с этими рассуждениями терапевтическая эффективность лечебных мероприятий (в частности, при инфаркте миокарда) зависит, прежде всего, от того, как они влияют на субстратный профиль крови. С учетом этого обстоятельства применение тиамина, снижающего уровень гликемии и повышающего плазматическую концентрацию свободных жирных кислот [85], в принятых условиях метаболически вряд ли оправдано.

Таким образом, несмотря на более чем 100-летний опыт использования тиамина в кардиологии, до сих пор нет удовлетворительного объяснения его несомненной терапевтической эффективности. Совершенно очевидно, что ввиду несостоятельности специфической (коферментной) или общеметаболической аргументации стратегия витаминокоррекции сердечно-сосудистой патологии должна строиться на патогенетической основе конкретных заболеваний.

Считается, что стресс, ишемия и сочетание этих факторов играют главную роль в возникновении основных заболеваний сердца [98]. Поэтому понятно, что программа борьбы с заболеваниями сердечно-сосудистой системы предусматривает развитие исследований, направленных на изучение патогенеза и обоснование принципов профилактики стрессорных и ишемических повреждений сердца. Стресс-реакция не просто предшествует ишемическому повреждению сердца, но и предопределяет его развитие, а боль и страх смерти, которые сопровождают приступы стенокардии, могут не только потенцировать дальнейшее прогрессирование ишемии за счет чрезмерного усиления и своеобразной «фиксации» нормального адренергического эффекта, но и стать причиной некоронарогенного адренергического повреждения неишемизированных отделов миокарда. Экспериментально установлено, что катехоламины вызывают сокращение круговых гладких мышц коронарных артерий, опосредованное через альфа-адренорецепторы. Чрезмерно длительное и значительное сужение артерий, первоначально являющееся причиной перераспределения крови, перерастает в контрактурный спазм, который может стать основой некроза миокарда. Обусловленная избытком катехоламинов активация липаз, фосфoлипаз, перекисного окисления липидов, достигая чрезмерного уровня, приводит уже не к интенсификации обновления и физиологически выгодным изменениям состава липидного бислоя мембран, а к его повреждению и, как следствие, нарушению функционирования липидзависимых ферментов, рецепторов и каналов ионной проницаемости. Активация гликолиза, которая может повысить резистентность органов и тканей к гипоксии при действии высоких концентраций катехоламинов, приводит к уменьшению резерва гликогена и снижению резистентности органов к гипоксии. Это значит, что при затянувшемся во времени стрессе адаптивные адренергические сдвиги превращаются в повреждение путем перехода количества в качество [98].

Детальное изучение адренергического механизма в развитии стрессорных кардиопатий фактически оставило вне поля зрения исследователей не менее важную этиологическую и патогенетическую роль коры надпочечников. Были подробно рассмотрены модуляторные системы организма, которые в естественных условиях блокируют определенные звенья патогенетической цепи адренергических повреждений сердца и ограничивают сами повреждения. Это дало возможность сформулировать принцип «подражания» этим модуляторным системам и показать, что на практике использование метаболитов этих систем и их химических аналогов во многих случаях обеспечивает эффективную защиту сердца от стрессорных и ишемических повреждений. Громадным творческим наследием школы Ф. Меерсона убедительно показано, что поиск средств профилактики и коррекции тяжелых кардиологических осложнений стресса «внутри» организма вполне оправдан. Следовательно, логично пытаться найти их и «снаружи», т. е. в окружающей среде среди незаменимых факторов питания организма.

В этой связи перспективным представляется исследование кардиотропности витамина В1, являющегося антистрессором, который способен снижать актуальность стрессорного воздействия через активацию стресслимитирующих систем [13]. Соответственно тиамин целесообразно использовать при хроническом стрессе, когда накапливающиеся относительно стойкие повреждения от одного стрессорного эпизода к другому могут играть роль в постепенном развитии первичного некоронарогенного кардиосклероза и хронической сердечной недостаточности, которые составляют важный механизм изнашивания сердца.

Аскорбиновая кислота. Уже в процессе выполнения работы, когда обнаружилось защитное антиишемическое действие витамина В1 при остром раздражении (эмоционально-болевой стресс) и появилась необходимость исследовать его собственную вазодилятаторную активность, последняя неожиданно проявилась у еще одного витамина – аскорбиновой кислоты, что предопределило включение ее в перечень исследуемых потенциальных кардиопротекторов. Поэтому следует рассмотреть еще один вид стресса – окислительный и связанные с ним NO-зависимые механизмы вазоконстрикции и вазодилятации.

«Окислительным стрессом» Г. Зисс называет повреждение биологически важных молекул (нуклеиновые кислоты, белки, липиды, углеводы) реактивными формами кислорода [315]. Витамин С считается главным антиоксидантом межклеточных жидкостей в организме, а также важным фактором внутриклеточной антиоксидантной защиты. Благодаря сильно выраженным восстановительным свойствам аскорбиновая кислота может легко взаимодействовать с О2-, Н2О2, ОН, НОСl, перекисными соединениями и синглетным кислородом, защищая компоненты вне– и внутриклеточной среды организма от окислительных повреждений.

Супероксидрадикал – это важнейший индуктор перекисного окисления липидов, резкая активация которого, а также фосфолипаз, плюс детергентное действие жирных кислот лизофосфатидов (липидная триада) являются основным патогенетическим механизмом повреждения кардиомиоцитов при стрессе [98].

Продукты взаимодействия О2- с белками, лейкотриены и другие обладают свойствами лейкотаксинов, стимулирующих миграцию лейкоцитов в зону ишемии. Уже через 1 ч после окклюзии коронарной артерии наблюдается адгезия нейтрофилов к эндотелию сосудов ишемизированной зоны. С началом реперфузии лейкоциты легко проникают в ткань миокарда, во множестве скапливаясь вокруг поврежденных клеток [277]. В активированных лейкоцитах резко повышается количество молекул индуцибельной синтетазы окиси азота за счет экспрессии соответствующего гена и начинается обвальный синтез больших (наномолярных) концентраций окиси азота из аргинина [274]. Поскольку активированные полиморфноядерные лейкоциты и макрофаги сами продуцируют значительные количества супероксиданиона, NO и О2- реагируют между собой с образованием еще более агрессивных радикалов ОNOO- и OH-, являющихся сильнейшими окислителями, которые определяют их валовый цитотоксический эффект [222].

Вновь образованный пероксинитрит (ОNOO-) подвергается протонированию (ONOOH) и через свои кислотные формы творит много вреда в клетке-мишени, нитрируя или окисляя ее биологически важные структуры. Единственной защитой клеток от агрессии является наличие в них достаточного количества быстрореагирующих SH-групп, которые способны нейтрализовать пероксинитрит через образование метаболически инертных S-нитрозотиолов. В случае дефицита тиолов пероксинитрит наносит удар и разрушает ткани, как это происходит при инфаркте миокарда, отеке легких или инсульте мозга [49].

Инфильтрация ишемизированного миокарда лейкоцитами и сопутствующая этому процессу лейкоцитарная деструкция поврежденных ишемией клеток миокарда, опосредованная супероксиданионом и пероксинитритом, способствует интенсификации ПОЛ. Важная роль свободнорадикальных процессов в развитии стрессорных кардиопатий уже сама по себе предопределяет наличие мощного кардиопротекторного потенциала у природных антиоксидантов [46].

Известно, что кардиотоксический эффект катехоламинов сопряжен с развитием окислительного стресса, когда чрезмерная генерация активных форм кислорода превышает физиологические возможности систем антиоксидантной защиты. Образование супероксиданиона имеет место при распаде (аутоокислении) самих катехоламинов в сердце, при активации ими цАМФ-зависимого свободнорадикального окисления в митохондриях или Са2+-зависимой трансформации ксантиндегидрогеназы в ксантиноксидазу [193].

Исходя из идеологии окислительного стресса, т. е. отталкиваясь от очевидной необходимости нейтрализации активных форм кислорода, применение витамина С для коррекции и профилактики адренергических повреждений миокарда обосновано патогенетически. Но в связи с NO можно предполагать и другие возможности реализации кардиотропной активности аскорбиновой кислоты, обусловленные тем, что окись азота выступает в качестве активного компонента эндотелиального фактора релаксации сосудов, образующегося в эндотелиальных клетках сосудов и вызывающего их расслабление [196, 274].

В системе кровообращения непрерывное образование физиологических (пикомолярных) концентраций NO конституитивной нитрогеноксидсинтетазой в сосудистом эндотелии поддерживает тканевую перфузию на соответствующем уровне и регулирует артериальное давление крови [175]. NO легко диффундирует в соседние гладкомышечные клетки, где связывается с железопорфиринами, т. е. с простетической группой (гем или железосерные кластеры) соответствующих ферментов, вызывая их активацию или ингибирование [341]. При этом акцепция NO гемовой частью гуанилатциклазы ведет к стимуляции синтеза цГМФ – медиатора вазодилятации [230].

Источником NO в организме могут быть и нитратсодержащие лекарства. Органические нитраты (нитроглицерин, изосорбиддинитрат и его однонитратный метаболит – изосорбид-5-мононитрат) вызывают диастолу гладких мышц [336]. В малых дозах, главным образом, они являются фактором, расширяющим вены, а в больших —

расширяют как вены, так и артерии [93]. Механизм действия нитратов, инициирующий релаксацию гладких мышц, известен и связан с выделением окиси азота. Так, нитроглицерин и другие органические нитраты превращаются в неорганические нитраты и окись азота под влиянием восстановителей, например сульфгидрильных групп цистеина [215]. Среди витаминов сильным восстановителем является аскорбиновая кислота, поэтому было интересно использовать ее для потенцирования антиангинального действия NO-доноров.

Похожие книги из библиотеки