I.7.2 «Ионы Скулачева»: история термина
Как вы помните из предыдущей главы, митохондрия работает как электростанция, и в процессе дыхания «заряжает» свою внутреннюю мембрану, как конденсатор (плюс снаружи, минус внутри). Внутренняя мембрана митохондрий является очень хорошим изолятором потому, что не пропускает обычные заряженные частицы. Но если заряженную частицу — (ион) окружить объемистыми водоотталкивающими органическими остатками, то мембрана перестанет быть для иона непреодолимой преградой. Идея применить подобные вещества — «проникающие ионы» для изучения митохондрий родилась на рубеже 1960-70-х гг. Один из авторов этой книги (В.П.С.) и его группа из МГУ совместно с группой Е.А. Либермана из Института биофизики обнаружили, что проникающие положительно заряженные ионы (т. е. катионы), способны избирательно перемещаться в митохондрии и там накапливаться (минус — внутри митохондрий, вы помните?). Именно эти опыты привели к открытию «митохондриального» электричества [190,189,316]. Оказалось также, что проникающие катионы — удобный инструмент для исследования биологических мембран; вскоре их стали активно использовать исследователи по всему миру, и в 1974 г. известный американский биохимик Д. Грин назвал их «ионами Скулачева» [107].
А в 1970-м году С.Е. Севериным, Л.С. Ягужинским и В.П.С. [434] было высказано предположение, сыгравшее затем решающую роль в разработке антиоксидантов нового поколения. Авторы предположили, что проникающие сквозь мембрану катионы могут использоваться как «молекулы-электровозы» для накопления в митохондриях незаряженных веществ, присоединенных к этим катионам. То есть, для доставки чего-нибудь полезного в митохондрию, необходимо прицепить это «что-то» к иону Скулачева и вся конструкция неизбежно окажется в митохондрии.
Правда, такому веществу, если оно добавлено снаружи клетки, надо будет еще преодолеть ее внешнюю оболочку — плазматическую мембрану. Но и тут удача на стороне ионов Скулачева — плазматическая мембрана клеток тоже заряжена, причем минус — внутри клетки, а плюс — снаружи. То есть, ионы Скулачева будут активно затягиваться внутрь клетки, чтобы потом отправиться в митохондрии.
Вы наверняка уже догадались, к чему мы ведем. Если нам нужен антиоксидант внутри митохондрии — давайте пришьем его к иону Скулачева и получится митохондриально-адресованный антиоксидант. Знакомьтесь: вещество SkQ1 (рис. I.7.1)
Левая часть формулы — это мощнейший антиоксидант из хлоропластов растений — пластохинон (отсюда буква Q в названии вещества — по-английски хинон пишется как quinone).
Далее идет децил — «связка» строго определенной длины, позволяющая точно расположить антиоксидант внутри мембраны. Справа — органический ион децилтрифенилфосфония, который является классическим «ионом Скулачева».
Само по себе оно очень странное, плохо растворимое как в воде, так и в масле. Не слишком стабильное, боится света. Оно хорошо чувствует себя только там, где предназначенное ему место — внутри биологических мембран. Точнее, на границе между мембраной и водной фазой. В начале наших исследований мы никак не могли научиться с ним работать. К примеру, берешь пробирку, наливаешь в нее разбавленный раствор SkQ1, через минуту отбираешь раствор обратно, анализируешь его — SkQ1 исчез! По лабораториям нашего проекта пошел слух о страшной нестабильности вещества. А ведь мы не просто изучаем его свойства, мы делаем лекарство от старости. Но как бы выглядело такое лекарство: запаянная ампула, хранящаяся в жидком азоте; её достают из жидкого азота и размораживают в спецтермостате; после этого у несчастного пациента есть всего несколько секунд, чтобы ее выпить! Представляете, во сколько все это обошлось бы пациенту?
К счастью, дело оказалось не в низкой стабильности. SkQ исчезал, потому что он налипал на стенки пластиковой пробирки. Там ему было комфортней всего: жирным телом — на пластике, а заряженной головкой — в воде. Сейчас мы уже научились бороться с этой проблемой и растворы SkQ1 хранятся годами.
В руках у нашей сотрудницы — колба с SkQ1.