Список литературы

[1] Ahlfors R., Lang S., Overmyer K., Jaspers P., Brosche M., Tauriainen A., Kollist H., Tuominen H., Belles-Boix E., Piippo M., Inze D., Palva E.T., Kangasjarvi J. (2004) Arabidopsis radical-induced cell death1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16, 7, 1925-37.

[2] Anisimov V.N., Egorov M.V., Krasilshchikova M.S., Lyamzaev K.G., Manskikh V.N., Moshkin M.P., Novikov E.A., Popovich I.G., Rogovin K.A., Shabalina I.G., Shekarova O.N., Skulachev M.V., Titova T.V., Vygodin V.A., Vyssokikh M.Y., Yurova M.N., Zabezhinsky M.A., Skulachev V.P. (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany) 3, 11, 1110-9.

[3] Anisimov V.N., Popovich I.G., Zabezhinski M.A., Anisimov S.V., Vesnushkin G.M., Vinogradova I.A. (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 1757, 5–6, 573-89.

[4] Antonenko Y.N., Avetisyan A.V., Cherepanov D.A., Knorre D.A., Korshunova G.A., Markova O.V., Ojovan S.M., Perevoshchikova I.V., Pustovidko A.V., Rokitskaya T.I., Severina I.I., Simonyan R.A., Smirnova E.A., Sobko A.A., Sumbatyan N.V., Severin F.F., Skulachev V.P. (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286, 20, 17831-17840.

[5] Antonenko Y.N., Khailova L.S., Knorre D.A., Markova O.V., Rokitskaya T.I., Ilyasova T.M., Severina I.I., Kotova E.A., Karavaeva Y.E., Prikhodko A.S., Severin F.F., Skulachev V.P. (2013) Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria. PLoS One 8, 4, e61902.

[6] Ascensao A., Lumini-Oliveira J., Oliveira P.J., Magalhaes J. (2011) Mitochondria as a target for exercise-induced cardioprotection. Curr.Drug Targets. 12, 6, 860–871.

[7] Aubert G., Lansdorp P.M. (2008) Telomeres and aging. Physiol Rev. 88, 2, 557–579.

[8] Austad S.N. (1997) Why we age? John Willey a. Sons New York.

[9] Austin S., St Pierre J. (2012) PGC1alpha and mitochondrial metabolism — emerging concepts and relevance in ageing and neurodegenerative disorders. J.Cell Sci. 125, Pt 21, 4963–4971.

[10] Azpurua J., Ke Z.H., Chen I.X., Zhang Q.W., Ermolenko D.N., Zhang Z.D.D., Gorbunova V., Seluanov A. (2013) Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proceedings of the National Academy of Sciences of the United States of America 110, 43, 1735017355.

[11] Barja G. (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854, 224-38.

[12] Barja G., Herrero A. (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14, 2, 312-8.

[13] Basta G. (2008) Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 196, 1, 9-21.

[14] Bejerano G., Pheasant M., Makunin I., Stephen S., Kent W.J., Mattick J.S., Haussler D. (2004) Ultraconserved elements in the human genome. Science 304, 5675, 1321-5.

[15] Bernardes d.J., Vera E., Schneeberger K., Tejera A.M., Ayuso E., Bosch F., Blasco M.A. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol.Med. 4, 8, 691–704.

[16] Blagosklonny M.V. (2008) Aging: ROS or TOR. Cell Cycle 7, 21, 334454.

[17] Blagosklonny M.V. (2013) Aging is not programmed: genetic pseudoprogram is a shadow of developmental growth. Cell Cycle 12, 24, 373642.

[18] Blasco M.A., Lee H.W., Hande M.P., Samper E., Lansdorp P.M., DePinho R.A., Greider C.W. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 91, 1, 25–34.

[19] Boczkowski J., Poderoso J.J., Motterlini R. (2006) CO-metal interaction: Vital signaling from a lethal gas. Trends Biochem Sci 31, 11, 614-21.

[20] Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science. 279, 5349, 349–352.

[21] Bohle U.R., Hilger H.H., Martin W.F. (1996) Island colonization and evolution of the insular woody habit in Echium L (Boraginaceae). Proc Natl Acad Sci U S A 93, 21, 11740-11745.

[22] Bonduriansky R., Brassil C.E. (2002) Rapid and costly ageing in wild male flies. Nature 420, 6914, 377–377.

[23] Booth F.W., Laye M.J., Lees S.J., Rector R.S., Thyfault J.P. (2008) Reduced physical activity and risk of chronic disease: the biology behind the consequences. Eur.J.Appl.Physiol. 102, 4, 381–390.

[24] Bousman S., Schneider G., Shampay J. (2003) Telomerase activity is widespread in adult somatic tissues of Xenopus. J.Exp.Zool.B Mol.Dev.Evol. 295, 1, 82–86.

[25] Bowles J.T. (1998) The evolution of aging: a new approach to an old problem of biology. Med.Hypotheses. 51, 3, 179–221.

[26] Bradley A.J., Mcdonald I.R., Lee A.K. (1980) Stress and mortality in a small marsupial (Antechinus-Stuartii, Macleay). General Compar Endocrinol 40, 2, 188–200.

[27] Braggins P.E., Trakshel G.M., Kutty R.K., Maines M.D. (1986) Characterization of two heme oxygenase isoforms in rat spleen: comparison with the hematin-induced and constitutive isoforms of the liver. Biochem Biophys Res Commun 141, 2, 528-33.

[28] Brown K., Xie S., Qiu X., Mohrin M., Shin J., Liu Y., Zhang D., Scadden D.T., Chen D. (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3, 2, 319-27.

[29] Brunet-Rossinni A.K. (2004) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125, 1, 11–20.

[30] Brunet-Rossinni A.K., Austad S.N. (2004) Ageing studies on bats: a review. Biogerontol 5, 4, 211-22.

[31] Bruzzone S., Basile G., Mannino E., Sturla L., Magnone M., Grozio A., Salis A., Fresia C., Vigliarolo T., Guida L., De Flora A., Tossi V., Cassia R., Lamattina L., Zocchi E. (2012) Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes. J Cell Physiol 227, 6, 2502-10.

[32] Buchner D.M. (2009) Physical activity and prevention of cardiovascular disease in older adults. Clin.Geriatr.Med. 25, 4, 661-75, viii.

[33] Buffenstein R. (2005) The naked mole-rat? A new long-living model for human aging research. J Gerontol, Series A — Biol Sci Med Sci 60, 11, 1369–1377.

[34] Buffenstein R., Edrey Y.H., Yang T., Mele J. (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age (Dordr) 30, 2–3, 99-109.

[35] Bujak-Gizycka B., Suski M., Olszanecki R., Madej J., Korbut R. (2009) [Metformin-an inhibitor of early stages of protein glycation]. Folia Med Cracov 50, 3–4, 21–33 (Polish).

[36] Burns R.J., Smith R.A., Murphy M.P. (1995) Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys 322, 1, 60-8.

[37] Butler C.G. (1954) The method and importance of the recognition by a colony of honeybees (A. mellifera) of the presence of its queen. Transact Royal Entomol Soc London 105, 2, 11–29.

[38] Butt M.S., Sultan M.T. (2010) Nigella sativa: reduces the risk of various maladies. Crit Rev Food Sci Nutr 50, 7, 654-65.

[39] Caldeira da Silva C.C., Cerqueira F.M., Barbosa L.F., Medeiros M.H., Kowaltowski A.J. (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7, 4, 55260.

[40] Cambray G. (2006) To Bee or not to Bee — swarming season is here. Science in Africa Oct, 2006,

[41] Capel F., Rimbert V., Lioger D., Diot A., Rousset P., Mirand P.P., Boirie Y., Morio B., Mosoni L. (2005) Due to reverse electron transfer, mitochondrial H2O2 release increases with age in human vastus lateralis muscle although oxidative capacity is preserved. Mech Ageing Dev 126, 4, 505-11.

[42] Capper R., Britt-Compton B., Tankimanova M., Rowson J., Letsolo B., Man S., Haughton M., Baird D.M. (2007) The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 19, 2495–2508.

[43] Capri M., Monti D., Salvioli S., Lescai F., Pierini M., Altilia S., Sevini F., Valensin S., Ostan R., Bucci L., Franceschi C. (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30, 10, 730-42.

[44] Carlquist S.J. (1974) Island biology, Columbia University Press. New York.

[45] Caro P., Gomez J., Sanchez I., Garcia R., Lopez-Torres M., Naudi A., Portero-Otin M., Pamplona R., Barja G. (2009) Effect of 40 % restriction of dietary amino acids (except methionine) on mitochondrial oxidative stress and biogenesis, AIF and SIRT1 in rat liver. Biogerontology 10, 5, 579-92.

[46] Carr-Saunders A.M. (1922) The population problem; a study in human evolution, Clarendon Press. Oxford,

[47] Carr C.J., King J.T., Visscher B. (1949) Delay of senescence infertility by dietary restriction. Proc Fedn Am Soc Exp Biol 8, 22.

[48] Chadeneau C., Siegel P., Harley C.B., Muller W.J., Bacchetti S. (1995) Telomerase activity in normal and malignant murine tissues. Oncogene. 11, 5, 893–898.

[49] Chauhan S.K., El Annan J., Ecoiffier T., Goyal S., Zhang Q., Saban D.R., Dana R. (2009) Autoimmunity in dry eye is due to resistance of Th17 to treg suppression. J Immunol 182, 3, 1247–1252.

[50] Chen M., Liu B.L., Gu L.Q., Zhu Q.S. (1986) The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain. Biochim Biophys Acta 851, 3, 469-74.

[51] Chetyrkin S., Mathis M., Pedchenko V., Sanchez O.A., McDonald W.H., Hachey D.L., Madu H., Stec D., Hudson B., Voziyan P. (2011) Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry 50, 27, 610212.

[52] Chetyrkin S.V., Mathis M.E., Ham A.J., Hachey D.L., Hudson B.G., Voziyan P.A. (2008) Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine. Free Radic Biol Med 44, 7, 1276-85.

[53] Cho D., Shin D.J., Jeon B.W., Kwak J.M. (2009) ROS-Mediated ABA Signaling. Journal of Plant Biology 52, 2, 102–113.

[54] Chouchani E.T., Methner C., Nadtochiy S.M., Logan A., Pell V.R., Ding S., James A.M., Cocheme H.M., Reinhold J., Lilley K.S., Partridge L., Fearnley I.M., Robinson A.J., Hartley R.C., Smith R.A., Krieg T., Brookes P.S., Murphy M.P. (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 10.1038/nm.3212

[55] Chow L.S., Greenlund L.J., Asmann Y.W., Short K.R., McCrady S.K., Levine J.A., Nair K.S. (2007) Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J.Appl.Physiol. 102, 3, 1078–1089.

[56] Ciechanover A. (2012) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Neurodegener Dis 10, 1–4, 722.

[57] Cocheme H.M., Quin C., McQuaker S.J., Cabreiro F., Logan A., Prime T. A., Abakumova I., Patel J.V., Fearnley I.M., James A.M., Porteous C.M., Smith R.A., Saeed S., Carre J.E., Singer M., Gems D., Hartley R.C., Partridge L., Murphy M.P. (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13, 3, 340-50.

[58] Colman R.J., Anderson R.M. (2011) Nonhuman primate calorie restriction. Antioxid Redox Signal 14, 2, 229–239.

[59] Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., Allison D.B., Cruzen C., Simmons H.A., Kemnitz J.W., Weindruch R. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 5937, 201-4.

[60] Comfort A. (1979) The biology of senescence, 3rd ed, Elsevier. New York.

[61] Cooke H.J., Smith B.A. (1986) Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb.Symp.Quant.Biol. 51 Pt 1:213-9., 213–219.

[62] Corona M., Hughes K.A., Weaver D.B., Robinson G.E. (2005) Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 126, 11, 1230-8.

[63] Corona M., Velarde R.A., Remolina S., Moran-Lauter A., Wang Y., Hughes K.A., Robinson G.E. (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A 104, 17, 7128-33.

[64] Coviello-McLaughlin G.M., Prowse K.R. (1997) Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res. 25, 15, 3051–3058.

[65] Csiszar A., Labinskyy N., Zhao X., Hu F., Serpillon S., Huang Z., Ballabh P., Levy R.J., Hintze T.H., Wolin M.S., Austad S.N., Podlutsky A., Ungvari Z. (2007) Vascular superoxide and hydrogen peroxide production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 6, 6, 783-97.

[66] Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61, 651-79.

[67] Dai D.F., Chen T., Wanagat J., Laflamme M., Marcinek D.J., Emond M.J., Ngo C.P., Prolla T.A., Rabinovitch P.S. (2010) Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 9, 4, 536-44.

[68] Dai D.F., Rabinovitch P.S. (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med 19, 7, 213–220.

[69] Darwin C. (1871) The descent of man, and selection in relation to sex, J. Murray. London.

[70] Dawkins R. (1976) The selfish gene, Oxford University Press. New York.

[71] Dawkins R. (1989) The evolution of evolvability. Artificial Life Proceedings (Langton, C.), 201–220. Addison Wesley, Massachusetts.

[72] de Magalhaes J.P. (2004) From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Exp.Cell Res. 300, 1, 1-10.

[73] Delaney M.A., Nagy L., Kinsel M.J., Treuting P.M. (2013) Spontaneous histologic lesions of the adult naked mole rat (Heterocephalus glaber): a retrospective survey of lesions in a zoo population. Vet Pathol 50, 4, 607-21.

[74] Deng H.B., Cheng C.L., Cui D.P., Li D.D., Cui L., Cai N.S. (2006) Structural and functional changes of immune system in aging mouse induced by D-galactose. Biomed Environ Sci 19, 6, 432-8.

[75] Dilman V.M. (1978) Ageing, metabolic immunodepression and carcinogenesis. Mech Ageing Dev 8, 3, 153-73.

[76] Dobzhansky T. (1973) Nothing in biology makes sense except in light of evolution. Am Biol Teacher 35, 3, 125–129.

[77] Doughan A.K., Dikalov S.I. (2007) Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 9, 11, 1825-36.

[78] Dragicevic N., Copes N., O'Neal-Moffitt G., Jin J., Buzzeo R., Mamcarz M., Tan J., Cao C., Olcese J.M., Arendash G.W., Bradshaw P.C. (2011) Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51, 1, 75–86.

[79] Du H., Guo L., Fang F., Chen D., Sosunov A.A., McKhann G.M., Yan Y., Wang C., Zhang H., Molkentin J.D., Gunn-Moore F.J., Vonsattel J.P., Arancio O., Chen J.X., Yan S.D. (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med 14, 10, 1097105.

[80] Dworkin J.P., Miller S.L. (2000) A kinetic estimate of the free aldehyde content of aldoses. Carbohydrate Res 329, 2, 359–365.

[81] Dwyer D.J., Camacho D.M., Kohanski M.A., Callura J.M., Collins J.J. (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol.Cell. 46, 5, 561–572.

[82] Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., Maywood E.S., Hastings M.H., Baliga N.S., Merrow M., Millar A.J., Johnson C.H., Kyriacou C.P., O'Neill J.S., Reddy A.B. (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 7399, 459-64.

[83] Edman U., Garcia A.M., Busuttil R.A., Sorensen D., Lundell M., Kapahi P., Vijg J. (2009) Lifespan extension by dietary restriction is not linked to protection against somatic DNA damage in Drosophila melanogaster. Aging Cell 8, 3, 331-8.

[84] Emery C.F., Kiecolt-Glaser J.K., Glaser R., Malarkey W.B., Frid D.J. (2005) Exercise accelerates wound healing among healthy older adults: a preliminary investigation. J.Gerontol.A Biol Sci.Med.Sci. 60, 11, 14321436.

[85] Eng P.M., Rimm E.B., Fitzmaurice G., Kawachi I. (2002) Social ties and change in social ties in relation to subsequent total and cause-specific mortality and coronary heart disease incidence in men. Am J Epidemiol 155, 8, 700–709.

[86] Engelberg-Kulka H., Amitai S., Kolodkin-Gal I., Hazan R. (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2, 10, e135.

[87] Engelberg-Kulka H., Yelin I., Kolodkin-Gal I. (2009) Activation of a built-in bacterial programmed cell death system as a novel mechanism of action of some antibiotics. Commun Integr Biol 2, 3, 211-2.

[88] Epel E.S., Blackburn E.H., Lin J., Dhabhar F.S., Adler N.E., Morrow J.D., Cawthon R.M. (2004) Accelerated telomere shortening in response to life stress. Proc.Natl.Acad.Sci.U.S.A. 101, 49, 1731217315.

[89] Erental A., Sharon I., Engelberg-Kulka H. (2012) Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS.Biol. 10, 3, e1001281.

[90] Erjavec N., Nystrom T. (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104, 26, 10877-81.

[91] Fenton M.J., Golenbock D.T. (1998) LPS-binding proteins and receptors. JLeukoc Biol 64, 1, 25–32.

[92] Ferguson M., Rebrin I., Forster M.J., Sohal R.S. (2008) Comparison of metabolic rate and oxidative stress between two different strains of mice with varying response to caloric restriction. Exp Gerontol 43, 8, 757-63.

[93] Fink B.D., Herlein J.A., Yorek M.A., Fenner A.M., Kerns R.J., Sivitz W.I. (2012) Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. J Pharmacol Exp Ther 342, 3, 709-19.

[94] Forster M.J., Morris P., Sohal R.S. (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J 17, 6, 690-2.

[95] Franceschi C., Bonafe M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908, 244-54.

[96] Fredrickson B.L., Grewen K.M., Coffey K.A., Algoe S.B., Firestine A.M., Arevalo J.M., Ma J., Cole S.W. (2013) A functional genomic perspective on human well-being. Proc Natl Acad Sci USA 10.1073/pnas.1305419110

[97] Fredriksson A., Johansson Krogh E., Hernebring M., Pettersson E., Javadi A., Almstedt A., Nystrom T. (2012) Effects of aging and reproduction on protein quality control in soma and gametes of Drosophila melanoga,ster. Aging Cell 11, 4, 634-43.

[98] Friguet B., Bulteau A.L., Chondrogianni N., Conconi M., Petropoulos I. (2000) Protein degradation by the proteasome and its implications in aging. Ann N Y Acad Sci 908, 143-54.

[99] Garcia A.M., Busuttil R.A., Calder R.B., Dolle M.E., Diaz V., McMahan C.A., Bartke A., Nelson J., Reddick R., Vijg J. (2008) Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mech Ageing Dev 129, 9, 528-33.

[100] Gardner E.M. (2005) Caloric restriction decreases survival of aged mice in response to primary influenza infection. J Gerontol A Biol Sci Med Sci 60, 6, 688–694.

[101] George J.C., Bada J., Zeh J., Scott L., Brown S.E., O'Hara T., Suydam R. (1999) Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Canad J Zool 77, 4, 571580.

[102] Giacomo C.G., Antonio M. (2007) Melatonin in cardiac ischemia/reperfusion-induced mitochondrial adaptive changes. Cardiovasc Hematol Disord Drug Targets 7, 3, 163-9.

[103] Gilpin M.E. (1975) Group selection in predator-prey communities, Princeton University Press. Princeton, N.J.

[104] Giorgio M., Migliaccio E., Paolucci D., Orsini F., Contursi C., Moroni M., Marcaccio A., Paolucci F., Pelicci P.G. (2004) p66Shc is a signal transduction redox enzyme. Biochim Biophys Acta 1658, 55–55.

[105] Goldsmith T.C. (2011) An introduction to the biological aging theory., Azinet Press. Crownsville.

[106] Gomes A.P., Price N.L., Ling A.J.Y., Moslehi J.J., Montgomery M.K., Rajman L., White J.P., Teodor J.S., Wrann C.D., Hubbard B.P., Mercken E.M., Palmeira C.M., de Cabo R., Rolo A.P., Turner N., Bell E.L., Sinclair D.A. (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 7, 1624–1638.

[107] Green D.E. (1974) The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346, 1, 27–78.

[108] Greenberg R.A., Allsopp R.C., Chin L., Morin G.B., DePinho R.A. (1998) Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene. 16, 13, 17231730.

[109] Greider C.W., Blackburn E.H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 43, 2 Pt 1, 405–413.

[110] Greider C.W., Blackburn E.H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 51, 6, 887–898.

[111] Grierson B. (28.11.2010) The incredible flying nonagenarian. New York Times Mag.

[112] Grigoryan E.N., Novikova Y.P., Kilina O.V., Philippov P.P. (2013) New antioxidant SkQ1 is an effective protector of rat neural retina under conditions of long-term organotypic cultivation. Advances in Aging Res 2, 2, 65–71.

[113] Groover A.T. (2005) What genes make a tree a tree? Trends in Plant Sci 10, 5, 210–214.

[114] Gu L.Q., Yu L., Yu C.A. (1990) Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives. Biochim Biophys Acta 1015, 3, 482-92.

[115] Guiamet J.J., John I., Pichersky E., Nooden L.D. (1997) Expression of a soybean thiol protease during leaf senescence and nitrogen starvation. Plant Physiol 114, 3, 1220–1220.

[116] Haddad L.S., Kelbert L., Hulbert A.J. (2007) Extended longevity of queen honey bees compared to workers is associated with peroxidation-resistant membranes. Exp Gerontol 42, 7, 601-9.

[117] Hamden K., Carreau S., Ayadi F., Masmoudi H., El Feki A. (2009) Inhibitory effect of estrogens, phytoestrogens, and caloric restriction on oxidative stress and hepato-toxicity in aged rats. Biomed Environ Sci 22, 5, 381-7.

[118] Hamilton W.D. (1964) Genetical evolution of social behaviour 1. J Theor Biol 7, 1, 1-16.

[119] Hamilton W.D. (1964) Genetical evolution of social behaviour 2. J Theor Biol 7, 1, 17–52.

[120] Handschin C., Spiegelman B.M. (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 454, 7203, 463–469.

[121] Hardeland R. (2008) Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 65, 13, 2001-18.

[122] Hardeland R., Poeggeler B. (2007) Actions of melatonin, its structural and functional analogs in the central nervous system and the significance of metabolism. Cent Nerv Syst Agents Med Chem. 7, 289303.

[123] Harman D. (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 3, 298–300.

[124] Harman D. (1972) The biologic clock: the mitochondria? J Am Ger Soc 20, 4, 145-7.

[125] Hawse J.R., Hejtmancik J.F., Horwitz J., Kantorow M. (2004) Identification and functional clustering of global gene expression differences between age-related cataract and clear human lenses and aged human lenses. Exp Eye Res 79, 6, 935-40.

[126] Hayflick L., Moorhead P.S. (1961) The serial cultivation of human diploid cell strains. Exp.Cell Res. 25:585–621., 585–621.

[127] Hazan R., Sat B., Engelberg-Kulka H. (2004) Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J.Bacteriol. 186, 11, 3663–3669.

[128] Hempenstall S., Picchio L., Mitchell S.E., Speakman J.R., Selman C. (2010) The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice. Mech Ageing Dev 131, 2, 111-8.

[129] Heywood R., Sortwell R.J., Noel P.R.B., Street A.E., Prentice D.E., Roe F.J.C., Wadsworth P.F., Worden A.N., Vanabbe N.J. (1979) Safety Evaluation of Toothpaste Containing Chloroform.3. Long-Term Study in Beagle Dogs. JEnvironm Pathol Toxicol 2, 3, 835–851.

[130] Hopkin K. (2003) Dietary drawbacks. Sci Aging Knowledge Environ 2003, 8, NS4.

[131] Hosaka N., Nose M., Kyogoku M., Nagata N., Miyashima S., Good R.A., Ikehara S. (1996) Thymus transplantation, a critical factor for correction of autoimmune disease in aging MRL/+mice. Proc Natl Acad Sci U S A 93, 16, 8558-62.

[132] Houben J.M., Moonen H.J., van Schooten F.J., Hageman G.J. (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free Radic.Biol Med, 44, 3, 235–246.

[133] Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R., Leung Y.H., Wang H., Liu H., Sun Y., Pasparakis M., Kopf M., Mech C., Bavari S., Peiris J.S., Slutsky A.S., Akira S., Hultqvist M., Holmdahl R., Nicholls J., Jiang C., Binder C.J., Penninger J.M. (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 2, 235-49.

[134] Jahngen J.H., Lipman R.D., Eisenhauer D.A., Jahngen E.G., Jr., Taylor A. (1990) Aging and cellular maturation cause changes in ubiquitin-eye lens protein conjugates. Arch Biochem Biophys 276, 1, 32-7.

[135] James A.M., Cocheme H.M., Smith R.A., Murphy M.P. (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280, 22, 21295-312.

[136] Jauslin M.L., Meier T., Smith R.A., Murphy M.P. (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17, 13, 1972-4.

[137] Jeppesen T.D., Duno M., Schwartz M., Krag T., Rafiq J., Wibrand F., Vissing J. (2009) Short- and long-term effects of endurance training in patients with mitochondrial myopathy. Eur.J.Neurol. 16, 12, 13361339.

[138] Jeppesen T.D., Schwartz M., Olsen D.B., Wibrand F., Krag T., Duno M., Hauerslev S., Vissing J. (2006) Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy. Brain. 129, Pt 12, 3402–3412.

[139] Jones O.R., Scheuerlein A., Salguero-Gomez R., Camarda C.G., Schaible R., Casper B.B., Dahlgren J.P., Ehrlen J., Garcia M.B., Menges E.S., Quintana-Ascencio P.F., Caswell H., Baudisch A., Vaupel J.W. (2014) Diversity of ageing across the tree of life. Nature 505, 7482, 169-73.

[140] Kagan V.E., Borisenko G.G., Tyurina Y.Y., Tyurin V.A., Jiang J., Potapovich A.I., Kini V., Amoscato A.A., Fujii Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37, 12, 1963-85.

[141] Kagan V.E., Tyurin V.A., Jiang J., Tyurina Y.Y., Ritov V.B., Amoscato A.A., Osipov A.N., Belikova N.A., Kapralov A.A., Kini V., Vlasova, II, Zhao Q., Zou M., Di P., Svistunenko D.A., Kurnikov I.V., Borisenko G.G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1, 4, 223-32.

[142] Kapahi P., Boulton M.E., Kirkwood T.B. (1999) Positive correlation between mammalian life span and cellular resistance to stress. Free Radic Biol Med 26, 5–6, 495–500.

[143] Karasek M. (2007) Does melatonin play a role in aging processes? J Physiol Pharmacol 58 Suppl 6, 105-13.

[144] Kashiwagi A., Hanada H., Yabuki M., Kanno T., Ishisaka R., Sasaki J., Inoue M., Utsumi K. (1999) Thyroxine enhancement and the role of reactive oxygen species in tadpole tail apoptosis. Free Radic Biol Med 26, 7–8, 1001-9.

[145] Kawanishi S., Oikawa S. (2004) Mechanism of telomere shortening by oxidative stress. Ann.N YAcad.Sci. 1019:278-84., 278–284.

[146] Kawashima M., Kawakita T., Okada N., Ogawa Y., Murat D., Nakamura S., Nakashima H., Shimmura S., Shinmura K., Tsubota K. (2010) Calorie restriction: A new therapeutic intervention for age-related dry eye disease in rats. Biochem Biophys Res Commun 397, 4, 724–728.

[147] Kelly D.P., Scarpulla R.C. (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 4, 357–368.

[148] Kelso G.F., Porteous C.M., Coulter C.V., Hughes G., Porteous W.K., Ledgerwood E.C., Smith R.A., Murphy M.P. (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276, 7, 4588-96.

[149] Kelso G.F., Porteous C.M., Hughes G., Ledgerwood E.C., Gane A.M., Smith R.A., Murphy M.P. (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959, 263-74.

[150] Kerr J.F., Wyllie A.H., Currie A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 4, 239-57.

[151] Keylock K.T., Vieira V.J., Wallig M.A., DiPietro L.A., Schrementi M., Woods J.A. (2008) Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice. Am.J.Physiol Regul.Integr.Comp Physiol. 294, 1, R179-R184.

[152] Kim E.B., Fang X., Fushan A.A., Huang Z., Lobanov A.V., Han L., Marino S.M., Sun X., Turanov A.A., Yang P., Yim S.H., Zhao X., Kasaikina M.V., Stoletzki N., Peng C., Polak P., Xiong Z., Kiezun A., Zhu Y., Chen Y., Kryukov G.V., Zhang Q., Peshkin L., Yang L., Bronson R.T., Buffenstein R., Wang B., Han C., Li Q., Chen L., Zhao W., Sunyaev S.R., Park T.J., Zhang G., Wang J., Gladyshev V.N. (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 7372, 223-7.

[153] Kim S.C., Crawford D.J., Francisco Ortega J., Santos Guerra A. (1996) A common origin for woody Sonchus and five related genera in the Macaronesian islands: Molecular evidence for extensive radiation. Proc Natl Acad Sci U S A 93, 15, 7743–7748.

[154] Kipling D., Davis T., Ostler E.L., Faragher R.G.A. (2004) What can progeroid syndrome tell us about human aging? Science 305, 5689, 1426–1431.

[155] Kirchner J.W., Roy B.A. (1999) The evolutionary advantages of dying young: Epidemiological implications of longevity in metapopulations. American Naturalist 154, 2, 140–159.

[156] Kirchner J.W., Roy B.A. (2002) Evolutionary implications of host-pathogen specificity: fitness consequences of pathogen virulence traits. Evolutionary Ecology Research 4, 1, 27–48.

[157] Kirkwood T.B., Kowald A. (2012) The free-radical theory of ageing — older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. Bioessays 34, 8, 692–700.

[158] Kirkwood T.B., Melov S. (2011) On the programmed/non-programmed nature of ageing within the life history. Curr Biol 21, 18, R701-7.

[159] Kirschner M., Gerhart J. (1998) Evolvability. Proc Natl Acad Sci US A 95, 15, 8420–8427.

[160] Klosterhalfen B., Bhardwaj R.S. (1998) Septic shock. Gen Pharmacol 31, 1, 25–32.

[161] Koga H., Kaushik S., Cuervo A.M. (2011) Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 10, 2, 205-15.

[162] Kolodkin-Gal I., Hazan R., Gaathon A., Carmeli S., Engelberg-Kulka H. (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science. 318, 5850, 652–655.

[163] Kolosova N.G., Stefanova N.A., Muraleva N.A., Skulachev V.P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats. Aging (Albany NY) 4, 10, 686-94.

[164] Korshunov S.S., Skulachev V.P., Starkov A.A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416, 1, 15-8.

[165] Krementsova A.V., Roshina N.V., Tsybul'ko E.A., Rybina O.Y., Symonenko A.V., Pasyukova E.G. (2012) Reproducible effects of the mitochondria-targeted plastoquinone derivative SkQ1 on Drosophila melanogaster lifespan under different experimental scenarios. Biogerontology 13, 6, 595–607.

[166] Kruk J., Jemiola-Rzeminska M., Strzalka K. (1997) Plastoquinol and alpha-tocopherol quinol are more active than ubiquinol and alpha-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids 87, 1, 73–80.

[167] Ku H.H., Brunk U.T., Sohal R.S. (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15, 6, 621-7.

[168] Kujoth G.C., Hiona A., Pugh T.D., Someya S., Panzer K., Wohlgemuth S.E., Hofer T., Seo A.Y., Sullivan R., Jobling W.A., Morrow J.D., Van Remmen H., Sedivy J.M., Yamasoba T., Tanokura M., Weindruch R., Leeuwenburgh C., Prolla T.A. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 5733, 481-4.

[169] Labbe A., Lafleur V.N., Patten D.A., Robitaille G.A., Garand C., Lamalice L., Lebel M., Richard D.E. (2012) The Werner syndrome gene product (WRN): a repressor of hypoxia-inducible factor-1 activity. Exp Cell Res 318, 14, 1620-32.

[170] Labinskyy N., Csiszar A., Orosz Z., Smith K., Rivera A., Buffenstein R., Ungvari Z. (2006) Comparison of endothelial function, O2-* and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol Heart Circ Physiol 291, 6, H2698-704.

[171] Lambert A.J., Boysen H.M., Buckingham J.A., Yang T., Podlutsky A., Austad S.N., Kunz T.H., Buffenstein R., Brand M.D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6, 5, 607–618.

[172] Lambert A.J., Buckingham J.A., Boysen H.M., Brand M.D. (2010) Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9, 1, 78–91.

[173] Lane N. (2008) Marine microbiology: origins of death. Nature 453, 7195, 583-5.

[174] LaRocca T.J., Seals D.R., Pierce G.L. (2010) Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. MechAgeing Dev. 131, 2, 165167.

[175] Lawenda B.D., Kelly K.M., Ladas E.J., Sagar S.M., Vickers A., Blumberg J.B. (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100, 11, 773-83.

[176] Le Page-Degivry M.T., Bidard J.N., Rouvier E., Bulard C., Lazdunski M. (1986) Presence of abscisic acid, a phytohormone, in the mammalian brain. Proc Natl Acad Sci U S A 83, 4, 1155-8.

[177] Lecomte V.J., Sorci G., Cornet S., Jaeger A., Faivre B., Arnoux E., Gaillard M., Trouve C., Besson D., Chastel O., Weimerskirch H. (2010) Patterns of aging in the long-lived wandering albatross. Proc Natl Acad Sci U S A 107, 14, 6370-5.

[178] Ledesma-Osuna A.I., Ramos-Clamont G., Vazquez-Moreno L. (2008) Characterization of bovine serum albumin glycated with glucose, galactose and lactose. Acta Biochimica Polonica 55, 3, 491–497.

[179] Lee H.Y., Choi C.S., Birkenfeld A.L., Alves T.C., Jornayvaz F.R., Jurczak M.J., Zhang D., Woo D.K., Shadel G.S., Ladiges W., Rabinovitch P.S., Santos J.H., Petersen K.F., Samuel V.T., Shulman G.I. (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 12, 6, 668-74.

[180] Lehmann G., Segal E., Muradian K.K., Fraifeld V.E. (2008) Do mitochondrial DNA and metabolic rate complement each other in determination of the mammalian maximum longevity? Rejuvenation Res 11, 2, 409–417.

[181] Lehrke M., Lazar M.A. (2005) The many faces of PPARgamma. Cell. 123, 6, 993–999.

[182] Lens F., Smets E., Melzer S. (2012) Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol 193, 1, 12-7.

[183] Leone T.C., Lehman J.J., Finck B.N., Schaeffer P.J., Wende A.R., Boudina S., Courtois M., Wozniak D.F., Sambandam N., Bernal-Mizrachi C., Chen Z., Holloszy J.O., Medeiros D.M., Schmidt R.E., Saffitz J.E., Abel E.D., Semenkovich C.F., Kelly D.P. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS.Biol. 3, 4, e101.

[184] Leopold A.C., Niedergangkamien E., Janick J. (1959) Experimental modification of plant senescence. Plant Physiol 34, 5, 570–573.

[185] Lewis K. (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64, 3, 503-14.

[186] Li X.D., Rebrin I., Forster M.J., Sohal R.S. (2012) Effects of age and caloric restriction on mitochondrial protein oxidative damage in mice. Mech Ageing Dev 133, 1, 30-6.

[187] Liang Y.X., Wang Z., Li D.D., Jiang J.M., Shao R.G. (2003) Effects of aging and advanced glycation on gene expression in cerebrum and spleen of mice. Biomed Environ Sci 16, 4, 323-32.

[188] Liao C.Y., Rikke B.A., Johnson T.E., Diaz V., Nelson J.F. (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9, 1, 92-5.

[189] Liberman E.A., Skulachev V.P. (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta 216, 1, 30–42.

[190] Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222, 5198, 1076-8.

[191] Libert S., Pletcher S.D. (2007) Modulation of longevity by environmental sensing. Cell 131, 7, 1231-4.

[192] Libert S., Zwiener J., Chu X., Vanvoorhies W., Roman G., Pletcher 5. D. (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315, 5815, 1133-7.

[193] Lin C.S., Sharpley M.S., Fan W., Waymire K.G., Sadun A.A., Carelli V., Ross-Cisneros F.N., Baciu P., Sung E., McManus M.J., Pan B.X., Gil D.W., Macgregor G.R., Wallace D.C. (2012) Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci US A 109, 49, 20065-70.

[194] Lin J., Handschin C., Spiegelman B.M. (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 6, 361–370.

[195] Lindoo S.J., Nooden L.D. (1977) Studies on behavior of senescence signal in anoka soybeans. Plant Physiol 59, 6, 1136–1140.

[196] Liu C., Li S., Liu T., Borjigin J., Lin J.D. (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 447, 7143, 477–481.

[197] Liu S.S. (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17, 3, 259-72.

[198] Liu S.S., Huang J.P. (1996) Coexistence of a “reactive oxygen cycle” with the Q cycle in the respiratory chain — a hypothesis for generating, partitioning and functioning of superoxide in mitochondria. Proc. Intern. Symp. Natural Antioxidants: Molecular Mechanism and Health Effects, 513–529, Champaign IL USA.

[199] Loison A., Festa-Blanchet, M., Gaillard, J-M., Jorgenson, J.T., Jullien, J-M. (1999) Age-specific survival in five populations of ungulates: evidence of senescence. Ecology 80, 2539–2554.

[200] Longo V.D., Mitteldorf J., Skulachev V.P. (2005) Programmed and altruistic ageing. Nature Rev Genet 6, 11, 866-72.

[201] Lopez A., Garcia J.A., Escames G., Venegas C., Ortiz F., Lopez L.C., Acuna-Castroviejo D. (2009) Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res 46, 2, 188-98.

[202] Love N.R., Chen Y., Ishibashi S., Kritsiligkou P., Lea R., Koh Y., Gallop J.L., Dorey K., Amaya E. (2012) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15, 2, 222-8.

[203] Lu J., Wu D.M., Zheng Y.L., Hu B., Zhang Z.F. (2010) Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathol 20, 3, 598–612.

[204] Lyamzaev K.G., Pustovidko A.V., Simonyan R.A., Rokitskaya T.I., Domnina L.V., Ivanova O.Y., Severina I.I., Sumbatyan N.V., Korshunova G.A., Tashlitsky V.N., Roginsky V.A., Antonenko Y.N., Skulachev M.V., Chernyak B.V., Skulachev V.P. (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine. Pharm Res 28, 11, 2883-95.

[205] Ma T., Hoeffer C.A., Wong H., Massaad C.A., Zhou P., Iadecola C., Murphy M.P., Pautler R.G., Klann E. (2011) Amyloid beta-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 31, 15, 5589-95.

[206] MacCay C.M., Crowell M.F. (1934) Prolonging the life span. Sci Mon 39, 405–414.

[207] MacCay C.M., Crowell M.F., Maynard L.A. (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10, 63–79.

[208] MacCay C.M., Maynard L.A., Barnes L.L. (1943) Growth, aging, chronic disease and lifespan in rats. Arch Biochem 2, 469.

[209] Maines M.D., Kappas A. (1975) Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J Biol Chem 250, 11, 4171-7.

[210] Mair W., Goymer P., Pletcher S.D., Partridge L. (2003) Demography of dietary restriction and death in Drosophila. Science 301, 5640, 1731-3.

[211] Maldonado T.A., Jones R.E., Norris D.O. (2000) Distribution of beta-amyloid and amyloid precursor protein in the brain of spawning (senescent) salmon: a natural, brain-aging model. Brain Research 858, 2, 237–251.

[212] Maldonado T.A., Jones R.E., Norris D.O. (2002) Intraneuronal amyloid precursor protein (APP) and appearance of extracellular beta-amyloid peptide (A beta) in the brain of aging kokanee salmon. J Neurobiol 53, 1, 11–20.

[213] Maldonado T.A., Jones R.E., Norris D.O. (2002) Timing of neurodegeneration and beta-amyloid (A beta) peptide deposition in the brain of aging kokanee salmon. J Neurobiol 53, 1, 21–35.

[214] Mao G.X., Deng H.B., Yuan L.G., Li D.D., Li Y.Y., Wang Z. (2010) Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomed Environ Sci 23, 2, 161-6.

[215] Marques-Aleixo I., Oliveira P.J., Moreira P.I., Magalhaes J., Ascensao A. (2012) Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Progress in Neurobiology 99, 2, 149-62.

[216] Martinez P., Blasco M.A. (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat.Rev.Cancer. 11, 3, 161–176.

[217] Massaad C.A., Klann E. (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14, 10, 2013-54.

[218] Matsuzaki J., Kuwamura M., Yamaji R., Inui H., Nakano Y. (2001) Inflammatory responses to lipopolysaccharide are suppressed in 40 % energy-restricted mice. J Nutr 131, 8, 2139-44.

[219] Maurel A., Hernandez C., Kunduzova O., Bompart G., Cambon C., Parini A., Frances B. (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 284, 4, H1460-7.

[220] McClintock B. (1939) The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc.Natl.Acad.Sci.U.S.A. 25, 8, 405416.

[221] Medawar P.B. (1952) An unsolved problem of biology, H. K. Lewis. London.

[222] Melzer S., Lens F., Gennen J., Vanneste S., Rohde A., Beeckman T.(2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nature Genetics 40, 12, 14891492.

[223] Menni C., Kastenmuller G., Petersen A.K., Bell J.T., Psatha M., Tsai P.C., Gieger C., Schulz H., Erte I., John S., Brosnan M.J., Wilson S.G., Tsaprouni L., Lim E.M., Stuckey B., Deloukas P., Mohney R., Suhre K., Spector T.D., Valdes A.M. (2013) Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol 10.1093/ije/dyt094

[224] Migliaccio E., Giorgio M., Mele S., Pelicci G., Reboldi P., Pandolfi P.P., Lanfrancone L., Pelicci P.G. (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 6759, 309-13.

[225] Miki H., Funato Y. (2012) Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem 151, 3, 25561.

[226] Milewski L.A.K. (2010) The evolution of ageing. Bioscience Horizons 3, 1, 77–84.

[227] Miller R.A., Buehner G., Chang Y., Harper J.M., Sigler R., Smith-Wheelock M. (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 3, 119-25.

[228] Mitteldorf J. Sagan D. (in press, 2014) Suicide genes, MacMillan Press

[229] Mott J.L., Zhang D., Freeman J.C., Mikolajczak P., Chang S.W., Zassenhaus H.P. (2004) Cardiac disease due to random mitochondrial DNA mutations is prevented by cyclosporin A. Biochem Biophys Res Commun 319, 4, 1210-5.

[230] Muller H.J. (1938) The re-making of chromosomes. Collecting Net (Woods Hole) 13, 181–198.

[231] Murphy M.P., Holmgren A., Larsson N.G., Halliwell B., Chang C.J., Kalyanaraman B., Rhee S.G., Thornalley P.J., Partridge L., Gems D., Nystrom T., Belousov V., Schumacker P.T., Winterbourn C.C. (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13, 4, 361-6.

[232] Murphy M.P., Smith R.A. (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47, 629-56.

[233] Murray T.V., McMahon J.M., Howley B.A., Stanley A., Ritter T., Mohr A., Zwacka R., Fearnhead H.O. (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121, Pt 22, 3786-93.

[234] Nader G.A., Lundberg I.E. (2009) Exercise as an anti-inflammatory intervention to combat inflammatory diseases of muscle. Curr.Opin.Rheumatol 21, 6, 599–603.

[235] Nagai R., Ikeda K., Higashi T., Sano H., Jinnouchi Y., Araki T., Horiuchi S. (1997) Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem Biophys Res Commun 234, 1, 167-72.

[236] Napoli C., Martin-Padura I., de Nigris F., Giorgio M., Mansueto G., Somma P., Condorelli M., Sica G., De Rosa G., Pelicci P. (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 100, 4, 2112-6.

[237] Narendra D.P., Youle R.J. (2011) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14, 10, 1929-38.

[238] Neumann P.M., Tucker A.T., Nooden L.D. (1983) Characterization of leaf senescence and pod development in soybean explants. Plant Physiol 72, 1, 182-5.

[239] Nooden L.D., Murray B.J. (1982) Transmission of the monocarpic senescence signal via the xylem in soybean. Plant Physiol 69, 4, 754756.

[240] Nystrom T. (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24, 7, 1311-7.

[241] Obin M., Halbleib M., Lipman R., Carroll K., Taylor A., Bronson R. (2000) Calorie restriction increases light-dependent photoreceptor cell loss in the neural retina of Fischer 344 rats. Neurobiol Aging 21, 5, 639-45.

[242] Obukhova L.A., Skulachev V.P., Kolosova N.G. (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats. Aging (Albany) 1, 4, 389–401.

[243] Olivieri F., Rippo M.R., Monsurro V., Salvioli S., Capri M., Procopio A.D., Franceschi C. (2013) MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 12, 4, 1056-68.

[244] Olovnikov A.M. (1971) Id! da! d v! $!!" [Principle of marginotomy in template synthesis of polynucleotides]. Dokl.Akad.Nauk SSSR. 201, 6, 1496–1499.

[245] Orrenius S., Gogvadze V., Zhivotovsky B. (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47, 143-83.

[246] Osiewacz H.D. (2003) Aging and mitochondrial dysfunction in the filamentous fungus Podospora anserina. Topics in Current Genetics (Nystrom, T., Osiewacz, H. D.), 17–38. Springer-Verlag Berlin Heidelberg.

[247] Osthus I.B., Sgura A., Berardinelli F., Alsnes I.V., Bronstad E., Rehn T., Stobakk P.K., Hatle H., Wisloff U., Nauman J. (2012) Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS.One. 7, 12, e52769.

[248] Ott M., Gogvadze V., Orrenius S., Zhivotovsky B. (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12, 5, 913-22.

[249] Ozdemir M., Temizdemir H. (2010) Age- and gender-related tear function changes in normal population. Eye 24, 1, 79–83.

[250] Paglialunga S., van Bree B., Bosma M., Valdecantos M.P., Amengual-Cladera E., Jorgensen J.A., van Beurden D., den Hartog G.J., Ouwens D.M., Briede J.J., Schrauwen P., Hoeks J. (2012) Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice. Diabetologia 10.1007/s00125-012-2626-x, (accepted).

[251] Palm W., de Lange T. (2008) How shelterin protects mammalian telomeres. Annu.Rev.Genet. 42:301-34. doi: 10.1146/annurev.genet.41.110306.130350., 301–334.

[252] Palmer A.K., Street A.E., Roe F.J.C., Worden A.N., Vanabbe N.J. (1979) Safety evaluation of toothpaste containing chloroform. 2. Long-term studies in rats. JEnvir Pathol Toxicol 2, 3, 821–833.

[253] Pamplona R., Portero-Otin M., Riba D., Ruiz C., Prat J., Bellmunt M.J., Barja G. (1998) Mitochondrial membrane peroxidizability index is inversely related to maximum life span in mammals. J Lipid Res 39, 10, 1989-94.

[254] Paradies G., Petrosillo G., Paradies V., Ruggiero F.M. (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48, 10, 1286-95.

[255] Park S.K., Kim K., Page G.P., Allison D.B., Weindruch R., Prolla T.A.(2009) Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 8, 4, 484-95.

[256] Parrinello S., Samper E., Krtolica A., Goldstein J., Melov S., Campisi J. (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat.Cell Biol. 5, 8, 741–747.

[257] Patten D.A., Lafleur V.N., Robitaille G.A., Chan D.A., Giaccia A.J., Richard D.E. (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol Biol Cell 21, 18, 3247-57.

[258] Penninx B.W., van Tilburg T., Kriegsman D.M., Deeg D.J., Boeke A.J., van Eijk J.T. (1997) Effects of social support and personal coping resources on mortality in older age: the longitudinal aging study. Am J Epidemiol 146, 6, 510-9.

[259] Pepper J.W., Shelton D.E., Rashidi A., Durand P.M. (2013) Are internal, death-promoting mechanisms ever adaptive? J Phylogen Evolution Biol 1, 3, 1000113.

[260] Petrosillo G., Matera M., Casanova G., Ruggiero F.M., Paradies G. (2008) Mitochondrial dysfunction in rat brain with aging. Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53, 5, 126-31.

[261] Piddock L.J., Walters R.N. (1992) Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrob.Agents Chemother. 36, 4, 819–825.

[262] Pierpaoli W., Bulian D. (2005) The pineal aging and death program: life prolongation in pre-aging pinealectomized mice. Ann N Y Acad Sci 1057, 133-44.

[263] Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S., Pevzner I.B., Silachev D.N., Skulachev V.P., Zorov D.B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta 1812, 1, 77–86.

[264] Plotnikov E.Y., Kazachenko A.V., Vyssokikh M.Y., Vasileva A.K., Tcvirkun D.V., Isaev N.K., Kirpatovsky V.I., Zorov D.B. (2007) The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney. Kidney Int 72, 12, 1493-502.

[265] Plotnikov E.Y., Morosanova M.A., Pevzner I.B., Zorova L.D., Manskikh V.N., Pulkova N.V., Galkina S.I., Skulachev V.P., Zorov D.B. (2013) Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. PNAS doi/10.1073/pnas.1307096110

[266] Pozniakovsky A.I., Knorre D.A., Markova O.V., Hyman A.A., Skulachev V.P., Severin F.F. (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168, 2, 257–269.

[267] Prowse K.R., Greider C.W. (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc.Natl.Acad.Sci.U.S.A. 92, 11, 4818–4822.

[268] Puigserver P., Wu Z., Park C.W., Graves R., Wright M., Spiegelman B.M. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92, 6, 829–839.

[269] Qiu X., Brown K., Hirschey M.D., Verdin E., Chen D. (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12, 6, 662-7.

[270] Radak Z., Hart N., Sarga L., Koltai E., Atalay M., Ohno H., Boldogh I.(2010) Exercise plays a preventive role against Alzheimer's disease. J.Alzheimers.Dis. 20, 3, 777–783.

[271] Radak Z., Naito H., Kaneko T., Tahara S., Nakamoto H., Takahashi R., Cardozo-Pelaez F., Goto S. (2002) Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch. 445, 2, 273–278.

[272] Radogna F., Cristofanon S., Paternoster L., D'Alessio M., De Nicola M., Cerella C., Dicato M., Diederich M., Ghibelli L. (2008) Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 44, 3, 316-25.

[273] Rae M.J., Butler R.N., Campisi J., de Grey A.D., Finch C.E., Gough M., Martin G.M., Vijg J., Perrott K.M., Logan B.J. (2010) The demographic and biomedical case for late-life interventions in aging. Sci Transl Med 2, 40, 40cm21.

[274] Ramsgaard L., Englert J.M., Manni M.L., Milutinovic P.S., Gefter J., Tobolewski J., Crum L., Coudriet G.M., Piganelli J., Zamora R., Vodovotz Y., Enghild J.J., Oury T.D. (2011) Lack of the receptor for advanced glycation end-products attenuates E. colipneumonia in mice. PLoS One 6, 5, e20132.

[275] Rattan S.I. (2005) Anti-ageing strategies: prevention or therapy? Showing ageing from within. EMBO Rep 6 Spec No, S25-9.

[276] Redman L.M., Ravussin E. (2011) Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal 14, 2, 275-87.

[277] Remolina S.C., Hughes K.A. (2008) Evolution and mechanisms of long life and high fertility in queen honey bees. Age (Dordr) 30, 2–3, 177-85.

[278] Richie J.P., Jr., Leutzinger Y., Parthasarathy S., Malloy V., Orentreich N., Zimmerman J.A. (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8, 15, 1302-7.

[279] Ricklefs R.E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Amer Naturalist 152, 1, 24–44.

[280] Robertson T.B., Marston R., Walters J.W. (1934) Influence of intermittent starvation and of intermittent starvation plus nucleic acid on growth and longevity in white mice. Aust JExp Biol Med Sci 12, 33.

[281] Robinson A.B., Robinson L.R. (1991) Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins. Proc Natl Acad Sci U S A 88, 20, 8880-4.

[282] Robinson N.E., Robinson A.B. (2001) Prediction of protein deamidation rates from primary and three-dimensional structure. Proc Natl Acad Sd U S A 98, 8, 4367-72.

[283] Robinson N.E., Robinson A.B. (2004) Amide molecular clocks in drosophila proteins: potential regulators of aging and other processes. Mech Ageing Dev 125, 4, 259-67.

[284] Robinson N.E., Robinson A.B. (2004) Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins, Althouse Press. Cave Junction.

[285] Rodriguez K.A., Wywial E., Perez V.I., Lambert A.J., Edrey Y.H., Lewis K.N., Grimes K., Lindsey M.L., Brand M.D., Buffenstein R. (2011) Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 17, 22, 2290-307.

[286] Roginsky V., Barsukova T., Loshadkin D., Pliss E. (2003) Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chem Phys Lipids 125, 1, 49–58.

[287] Roginsky V.A., Tashlitsky V.N., Skulachev V.P. (2009) Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging (Albany NY) 1, 5, 4819.

[288] Rowe G.C., El Khoury R., Patten I.S., Rustin P., Arany Z. (2012) PGC-1alpha is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS.One. 7, 7, e41817.

[289] Ruotolo R., Grassi F., Percudani R., Rivetti C., Martorana D., Maraini G., Ottonello S. (2003) Gene expression profiling in human age-related nuclear cataract. Mol Vis 9, 538-48.

[290] Russell A.P., Feilchenfeldt J., Schreiber S., Praz M., Crettenand A., Gobelet C., Meier C.A., Bell D.R., Kralli A., Giacobino J.P., Deriaz O. (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 52, 12, 2874–2881.

[291] Sablina A.A., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M. (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11, 12, 1306-13.

[292] Safdar A., Bourgeois J.M., Ogborn D.I., Little J.P., Hettinga B.P., Akhtar M., Thompson J.E., Melov S., Mocellin N.J., Kujoth G.C., Prolla T.A., Tarnopolsky M.A. (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 108, 10, 4135-40.

[293] Saito H., Hammond A.T., Moses R.E. (1995) The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp.Cell Res. 217, 2, 272–279.

[294] Sanchez-Roman I., Gomez A., Gomez J., Suarez H., Sanchez C., Naudi A., Ayala V., Portero-Otin M., Lopez-Torres M., Pamplona R., Barja G.(2011) Forty percent methionine restriction lowers DNA methylation, complex I ROS generation, and oxidative damage to mtDNA and mitochondrial proteins in rat heart. J Bioenerg Biomembr 43, 6, 699708.

[295] Sanchez-Roman I., Gomez A., Perez I., Sanchez C., Suarez H., Naudi A., Jove M., Lopez-Torres M., Pamplona R., Barja G. (2012) Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 13, 4, 399–411.

[296] Sanz A., Caro P., Ayala V., Portero-Otin M., Pamplona R., Barja G. (2006) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J20, 8, 1064-73.

[297] Saretzki G., Murphy M.P., von Zglinicki T. (2003) MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2, 2, 141-3.

[298] Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., Wallace D.C., Rabinovitch P.S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 5730, 1909-11.

[299] Seluanov A., Hine C., Azpurua J., Feigenson M., Bozzella M., Mao Z., Catania K.C., Gorbunova V. (2009) Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci U S A 106, 46, 19352-7.

[300] Severin F.F., Hyman A.A. (2002) Pheromone induces programmed cell death in S. cerevisiae. Current Biol 12, 7, R233-R235.

[301] Severin F.F., Severina I.I., Antonenko Y.N., Rokitskaya T.I., Cherepanov D.A., Mokhova E.N., Vyssokikh M.Y., Pustovidko A.V., Markova O.V., Yaguzhinsky L.S., Korshunova G.A., Sumbatyan N.V., Skulachev M.V., Skulachev V.P. (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore Proc Natl Acad Sci U S A 107, 2, 663–668.

[302] Severina I.I., Severin F.F., Korshunova G.A., Sumbatyan N.V., Ilyasova T.M., Simonyan R.A., Rogov A.G., Trendeleva T.A., Zvyagilskaya R.A., Dugina V.B., Domnina L.V., Fetisova E.K., Lyamzaev K.G., Vyssokikh M.Y., Chernyak B.V., Skulachev M.V., Skulachev V.P., Sadovnichii V.A. (2013) In search of novel highly active mitochondria-targeted antioxidants: Thymoquinone and its cationic derivatives. FEBS Lett 587, 13, 2018-24.

[303] Shabalina I.G., Vyssokikh M.Y., Bakeeva L.E., Gibanova N.V., Csikasz R., Edgar D., Rozhdestvenskaya Z.E., Pustovidko A.V., Waldermarson A., Larsson N.G., Trifunovic A., Cannon B., Skulachev V.P., Nedergaard J. (2014) Mitochondrially-targeted plastoquinone improves mitochondria and increases life-span in mutator mice. (in preparation)

[304] Shahri W. (2011) Senescence: concepts and synonyms. Asian Journal of Plant Sciences 10, 1, 24–28.

[305] Sharonov G.V., Feofanov A.V., Bocharova O.V., Astapova M.V., Dedukhova V.I., Chernyak B.V., Dolgikh D.A., Arseniev A.S., Skulachev V.P., Kirpichnikov M.P. (2005) Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 10, 4, 797–808.

[306] Shawi M., Autexier C. (2008) Telomerase, senescence and ageing. Mech.Ageing Dev. 129, 1–2, 3-10.

[307] Shay J.W., Roninson I.B. (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 23, 16, 2919–2933.

[308] Shi Y., Pulliam D.A., Liu Y., Hamilton R.T., Jernigan A.L., Bhattacharya A., Sloane L.B., Qi W., Chaudhuri A., Buffenstein R., Ungvari Z., Austad S.N., Van Remmen H. (2013) Reduced mitochondrial ROS, enhanced antioxidant defense, and distinct age-related changes in oxidative damage in muscles of long-lived Peromyscus leucopus. Am J Physiol Regul Integr Comp Physiol 304, 5, R343-55.

[309] Shipounova I.N., Svinareva D.A., Petrova T.V., Lyamzaev K.G., Chernyak B.V., Drize N.I., Skulachev V.P. (2010) Reactive oxygen species produced in mitochondria are involved in age-dependent changes of hematopoietic and mesenchymal progenitor cells in mice. A study with the novel mitochondria-targeted antioxidant SkQ1. Mech Ageing Dev 131, 6, 415-21.

[310] Shirey K.A., Lai W., Scott A.J., Lipsky M., Mistry P., Pletneva L.M., Karp C.L., McAlees J., Gioannini T.L., Weiss J., Chen W.H., Ernst R.K., Rossignol D.P., Gusovsky F., Blanco J.C., Vogel S.N. (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497, 7450, 498–502.

[311] Shringarpure R., Davies K.J. (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32, 11, 1084-9.

[312] Silachev D.N., Isaev N.K., Pevzner I.B., Zorova L.D., Stelmashook E.V., Novikova S.V., Plotnikov E.Y., Skulachev V.P., Zorov D.B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One 7, 12, e51553.

[313] Sitte N., Merker K., Von Zglinicki T., Grune T., Davies K.J. (2000) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I-effects of proliferative senescence. FASEB J 14, 15, 2495-502.

[314] Sivan S.S., Van El B., Merkher Y., Schmelzer C.E., Zuurmond A.M., Heinz A., Wachtel E., Varga P.P., Lazary A., Brayda-Bruno M., Maroudas A. (2012) Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochim Biophys Acta 1820, 10, 1671-7.

[315] Skulachev M.V., Antonenko Y.N., Anisimov V.N., Chernyak B.V., Cherepanov D.A., Chistyakov V.A., Egorov M.V., Kolosova N.G., Korshunova G.A., Lyamzaev K.G., Plotnikov E.Y., Roginsky V.A., Savchenko A.Y., Severina I.I., Severin F.F., Shkurat T.P., Tashlitsky V.N., Shidlovsky K.M., Vyssokikh M.Y., Zamyatnin A.A., Zorov D.B., Skulachev V.P. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12, 6, 800–826.

[316] Skulachev V.P. (1988) Membrane bioenergetics, Springer-Verlag. Berlin; New York.

[317] Skulachev V.P. (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294, 3, 158-62.

[318] Skulachev V.P. (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29, 2, 169–202.

[319] Skulachev V.P. (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 397, 1, 7-10.

[320] Skulachev V.P. (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 2, 100-24.

[321] Skulachev V.P. (2002) Programmed death in yeast as adaptation? FEBS Lett 528, 1–3, 23-6.

[322] Skulachev V.P. (2002) Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci 959, 214-37.

[323] Skulachev V.P. (2003) Aging and the programmed death phenomena. Topics Curr Genet, Model Systems in Aging (Nystrom, T. and Osiewacz, H.D.), 192–237. Springer-Verlag, Berlin Heidelberg.

[324] Skulachev V.P. (2011) Aging as a particular case of phenoptosis, the programmed death of an organism (A response to Kirkwood and Melov "On the programmed/non-programmed nature of ageing within the life history"). Aging (Albany) 3, 11, 1120–1123.

[325] Skulachev V.P. (2011) SkQ1 treatment and food restriction — two ways to retard an aging program of organisms. Aging (Albany) 3, 11, 10451050.

[326] Skulachev V.P. (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis 28, 2, 283–289.

[327] Skulachev V.P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun 441, 2, 275-9.

[328] Skulachev V.P., Anisimov V.N., Antonenko Y.N., Bakeeva L.E., Chernyak B.V., Erichev V.P., Filenko O.F., Kalinina N.I., Kapelko V.I., Kolosova N.G., Kopnin B.P., Korshunova G.A., Lichinitser M.R., Obukhova L.A., Pasyukova E.G., Pisarenko O.I., Roginsky V.A., Ruuge E.K., Senin I.I., Severina I.I., Skulachev M.V., Spivak I.M., Tashlitsky V.N., Tkachuk V.A., Vyssokikh M.Y., Yaguzhinsky L.S., Zorov D.B. (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787, 5, 437-61.

[329] Skulachev V.P., Antonenko Y.N., Cherepanov D.A., Chernyak B.V., Izyumov D.S., Khailova L.S., Klishin S.S., Korshunova G.A., Lyamzaev K.G., Pletjushkina O.Y., Roginsky V.A., Rokitskaya T.I., Severin F.F., Severina I.I., Simonyan R.A., Skulachev M.V., Sumbatyan N.V., Sukhanova E.I., Tashlitsky V.N., Trendeleva T.A., Vyssokikh M.Y., Zvyagilskaya R.A. (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta 1797, 6–7, 878-89.

[330] Skulachev V.P., Bogachev A.V., Kasparinsky F.O. (2013) Principles of Bioenergetics, Springer Berlin Heidelberg

[331] Skulachev V.P., Longo V.D. (2005) Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann N Y Acad Sci 1057, 145-64.

[332] Smith R.A., Hartley R.C., Cocheme H.M., Murphy M.P. (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33, 6, 341-52.

[333] Smith R.A., Porteous C.M., Coulter C.V., Murphy M.P. (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263, 3, 709-16.

[334] Sniegowski P.D., Gerrish P.J., Lenski R.E. (1997) Evolution of high mutation rates in experimental populations of E-coli. Nature 387, 6634, 703–705.

[335] Sobotnik J., Bourguignon T., Hanus R., Demianova Z., Pytelkova J., Mares M., Foltynova P., Preisler J., Cvacka J., Krasulova J., Roisin Y.(2012) Explosive backpacks in old termite workers. Science 337, 6093, 436–436.

[336] Sohal R.S., Ferguson M., Sohal B.H., Forster M.J. (2009) Life span extension in mice by food restriction depends on an energy imbalance. J Nutr 139, 3, 533-9.

[337] Sohal R.S., Ku H.H., Agarwal S. (1993) Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 196, 1, 7-11.

[338] Sohal R.S., Orr W.C. (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52, 3, 539-55.

[339] Someya S., Yu W., Hallows W.C., Xu J., Vann J.M., Leeuwenburgh C., Tanokura M., Denu J.M., Prolla T.A. (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 5, 802-12.

[340] Sommer S.S. (1994) Does cancer kill the individual and save the species? Hum Mutat 3, 2, 166-9.

[341] Song X., Bao M.M., Li D.D., Li Y.M. (1999) Advanced glycation in D-galactose induced mouse aging model. Mech Ageing Dev 108, 3, 239251.

[342] Starkov A.A., Fiskum G. (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86, 5, 1101-7.

[343] Stefanova N.A., Fursova A., Kolosova N.G. (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J Alzheimer's Dis 21, 2, 479-91.

[344] Steiner J.L., Murphy E.A., McClellan J.L., Carmichael M.D., Davis J.M. (2011) Exercise training increases mitochondrial biogenesis in the brain. J.Appl.Physiol. 111, 4, 1066–1071.

[345] Stolen T.O., Hoydal M.A., Kemi O.J., Catalucci D., Ceci M., Aasum E., Larsen T., Rolim N., Condorelli G., Smith G.L., Wisloff U. (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105, 6, 527-36.

[346] Stuchlikova E., Juricova-Horakova M., Deyl Z. (1975) New aspects of the dietary effect of life prolongation in rodents. What is the role of obesity in aging? Exp Gerontol 10, 2, 141-4.

[347] Stunkard A.J., Rockstein M. (1976) Nutrition, longevity and obesity. Nutrition, aging and obesity Academic Press, New York, 253–284.

[348] Sun D.X., Muthukumar A.R., Lawrence R.A., Fernandes G. (2001) Effects of calorie restriction on polymicrobial peritonitis induced by cecum ligation and puncture in young C57BL/6 mice. Clin Diagn Lab Imm 8, 5, 1003–1011.

[349] Sun H., Skogerbo G., Wang Z., Liu W., Li Y.X. (2008) Structural relationships between highly conserved elements and genes in vertebrate genomes. PLoS One 3, 11, e3727.

[350] Swamy M.S., Tsai C., Abraham A., Abraham E.C. (1993) Glycation mediated lens crystallin aggregation and cross-linking by various sugars and sugar phosphates in vitro. Exp Eye Res 56, 2, 177–185.

[351] Szilard L. (1959) On the nature of the aging process. Proc Natl Acad Sci U S A 45, 1, 30–45.

[352] Tanouchi Y., Pai A., Buchler N.E., You L. (2012) Programming stress-induced altruistic death in engineered bacteria. Mol.Syst.Biol. 8:626. doi: 10.1038/msb.2012.57., 626.

[353] Tao R., Coleman M.C., Pennington J.D., Ozden O., Park S.H., Jiang H., Kim H.S., Flynn C.R., Hill S., Hayes McDonald W., Olivier A.K., Spitz D.R., Gius D. (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40, 6, 893–904.

[354] Tenhunen R., Marver H.S., Schmid R. (1968) The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61, 2, 748-55.

[355] Terzibasi E., Valenzano D.R., Cellerino A. (2007) The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp Gerontol 42, 1–2, 81–89.

[356] Tian X., Azpurua J., Hine C., Vaidya A., Myakishev-Rempel M., Ablaeva J., Mao Z., Nevo E., Gorbunova V., Seluanov A. (2013) High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 7458, 346-9.

[357] Tomas-Loba A., Flores I., Fernandez-Marcos P.J., Cayuela M.L., Maraver A., Tejera A., Borras C., Matheu A., Klatt P., Flores J.M., Vina J., Serrano M., Blasco M.A. (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell. 135, 4, 609–622.

[358] Trendeleva T.A., Sukhanova E.I., Rogov A.G., Zvyagilskaya R.A., Severina I.I., Ilyasova T.M., Cherepanov D.A., Skulachev V.P. (2012) Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes. Mitochondrion 13, 5, 500–506.

[359] Treuting P.M., Linford N.J., Knoblaugh S.E., Emond M.J., Morton J.F., Martin G.M., Rabinovitch P.S., Ladiges W.C. (2008) Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci 63, 8, 813–824.

[360] Trifunovic A., Wredenberg A., Falkenberg M., Spelbrink J.N., Rovio A.T., Bruder C.E., Bohlooly Y.M., Gidlof S., Oldfors A., Wibom R., Tornell J., Jacobs H.T., Larsson N.G. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 6990, 417-23.

[361] Trinei M., Giorgio M., Cicalese A., Barozzi S., Ventura A., Migliaccio E., Milia E., Padura I.M., Raker V.A., Maccarana M., Petronilli V., Minucci S., Bernardi P., Lanfrancone L., Pelicci P.G. (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21, 24, 3872-8.

[362] Tsirigotis M., Zhang M., Chiu R.K., Wouters B.G., Gray D.A. (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to proteindamaging agents. JBiol Chem 276, 49, 46073-8.

[363] Tsubota K., Kawashima M., Inaba T., Dogru M., Ogawa Y., Nakamura S., Shinmura K., Higuchi A., Kawakita T. (2010) The era of antiaging ophthalmology comes of age: antiaging approach for dry eye treatment. Ophthalmic Res 44, 3, 146–154.

[364] Turturro A., Witt W.W., Lewis S., Hass B.S., Lipman R.D., Hart R.W. (1999) Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J Gerontol A Biol Sci Med Sci 54, 11, B492-501.

[365] Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C., Park S.H., Thompson T., Karsenty G., Bradley A., Donehower L.A. (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature. 415, 6867, 45–53.

[366] Vallejo E.A. (1957) [Hunger diet on alternate days in the nutrition of the aged]. Prensa Med Argent 44, 2, 119-20 (Spanish).

[367] Vays V.B., Eldarov C.M., Vangely I.M., Kolosova N.G., Bakeeva L.E., Skulachev V.P. (2014) Antioxidant SkQ1 delays sarcopenia-associated damage of mitochondrial ultrastructure. Aging (Albany NY)

[368] Vaziri H., Benchimol S. (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr.Biol. 8, 5, 279–282.

[369] Venkatesan R.N., Price C. (1998) Telomerase expression in chickens: constitutive activity in somatic tissues and down-regulation in culture. Proc.Natl.Acad.Sci.U.S.A. 95, 25, 14763-14768.

[370] Vlachantoni D., Bramall A.N., Murphy M.P., Taylor R.W., Shu X., Tulloch B., Van Veen T., Turnbull D.M., Mclnnes R.R., Wright A.F. (2011) Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20, 2, 322-35.

[371] von Zglinicki T. (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann.N Y Acad.Sci. 908:99-110., 99-110.

[372] Votyakova T.V., Reynolds I.J. (2001) DeltaPsi(m)-dependent and — independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79, 2, 266-77.

[373] Vreeland R.H., Rosenzweig W.D., Powers D.W. (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 6806, 897–900.

[374] Walker G.C. (1996) The SOS response of Escherichia coli Escherichia coli and Salmonella. Cellular and Molecular Biology. (F.C.Neidhard et al.), 1400–1416. ASM Press, Washington.

[375] Wallace D.C., Singh G., Lott M.T., Hodge J.A., Schurr T.G., Lezza A.M., Elsas L.J., 2nd, Nikoskelainen E.K. (1988) Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242, 4884, 1427-30.

[376] Wanagat J., Dai D.F., Rabinovitch P. (2010) Mitochondrial oxidative stress and mammalian healthspan. Mech Ageing Dev 131, 7–8, 527-35.

[377] Weismann A. (1889) Essays upon heredity and kindred biological problems, Clarendon press. Oxford.

[378] Wenz T. (2011) Mitochondria and PGC-1alpha in Aging and Age-Associated Diseases. J.Aging Res. 2011:810619. doi: 10.4061/2011/810619. Epub@2011 May 5., 810619.

[379] Wenz T. (2013) Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 13, 2, 134–142.

[380] Wenz T., Diaz F., Hernandez D., Moraes C.T. (2009) Endurance exercise is protective for mice with mitochondrial myopathy. J.Appl.Physiol. 106, 5, 1712–1719.

[381] Wenz T., Rossi S.G., Rotundo R.L., Spiegelman B.M., Moraes C.T. (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc.Natl.Acad.Sci.U. S.A. 106, 48, 20405-20410.

[382] White A., Handler P., Smith E.L. (1973) Principles of biochemistry, McGraw-Hill. New York.

[383] Will L.C., MacCay C.M. (1943) Ageing, basal metabolism and retarded growth. Arch Biochem 2, 481.

[384] Williams G.C. (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 4, 398–411.

[385] Wodinsky J. (1977) Hormonal Inhibition of feeding and death in octopus — control by optic gland secretion. Science 198, 4320, 948951.

[386] Wolfe K.H., Sharp P.M., Li W.H. (1989) Mutation-rates differ among regions of the mammalian genome. Nature 337, 6204, 283–285.

[387] Woo C.C., Kumar A.P., Sethi G., Tan K.H. (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83, 4, 443-51.

[388] Wright B.E. (2004) Stress-directed adaptive mutations and evolution. Molecular Microbiology 52, 3, 643–650.

[389] Xiao R., Zhang B., Dong Y.M., Gong J.K., Xu T., Liu J.F., Xu X.Z.S.(2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152, 4, 806–817.

[390] Xu R., Andres-Mateos E., Mejias R., Macdonald E.M., Leinwand L.A., Merriman D.K., Fink R.H., Cohn R.D. (2013) Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp.Neurol. 13, 10.

[391] Yamaguchi Y., Park J.H., Inouye M. (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45, 61–79.

[392] Yang Y., Karakhanova S., Soltek S., Werner J., Philippov P.P., Bazhin A.V. (2012) In vivo immunoregulatory properties of the novel mitochondria-targeted antioxidant SkQ1. Mol Immunol 52, 1, 19–29.

[393] Yashin A.I., Ukraintseva S.V., Arbeev K.G., Akushevich I., Arbeeva L.S., Kulminski A.M. (2009) Maintaining physiological state for exceptional survival: What is the normal level of blood glucose and does it change with age? Mech Ageing Dev 130, 9, 611-8.

[394] Yu B.P. (1994) Modulation of aging processes by caloric restriction, CRC Press. Boca Raton.

[395] Yu T., Wang X., Purring-Koch C., Wei Y., McLendon G.L. (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1. JBiol Chem 276, 16, 13034-8.

[396] Zahavi A. (1975) Mate selection — a selection for a handicap. J Theor Biol 53, 1, 205-14.

[397] Zechner C., Lai L., Zechner J.F., Geng T., Yan Z., Rumsey J.W., Collia D., Chen Z., Wozniak D.F., Leone T.C., Kelly D.P. (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 6, 633642.

[398] Zermati Y., Mouhamad S., Stergiou L., Besse B., Galluzzi L., Boehrer S., Pauleau A.L., Rosselli F., D'Amelio M., Amendola R., Castedo M., Hengartner M., Soria J.C., Cecconi F., Kroemer G. (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28, 4, 624-37.

[399] Zhang G., Li J., Purkayastha S., Tang Y., Zhang H., Yin Y., Li B., Liu G., Cai D. (2013) Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497, 7448, 211-6.

[400] Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 7285, 104-7.

[401] Zhang Y., Zhang J., Hoeflich K.P., Ikura M., Qing G., Inouye M. (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol.Cell. 12, 4, 913–923.

[402] Zinovkin R.A., Bakeeva L.E., Chernyak B.V., Egorov M.V., Isaev N.K., Kolosova N.G., Korshunova G.A., Manskikh V.N., Moshkin M.P., Plotnikov E.Y., Rogovin K.A., Savchenko A.Y., Zamyatnin A.A.J., Zorov D.B., Skulachev M.V., Skulachev V.P. (accepted) Penetrating cations as mitochondria-targeted antioxidants. Systems biology of free radicals and antioxidants (Laher, I.). Springer-Verlag Berlin.

[403] Zorov D.B., Filburn C.R., Klotz L.O., Zweier J.L., Sollott S.J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192, 7, 100114.

[404] Агапова Л.С., Черняк Б.В., Домнина Л.В., Дугина В.Б., Ефименко А.Ю., Фетисова Е.К., Иванова О.Ю., Калинина Н.И., Хромова Н.В., Копнин Б.П., Копнин П.Б., Коротецкая М.В., Личиницер М.Р., Лукашев А.Л., Плетюшкина О.Ю., Попова Е.Н., Скулачев М.В., Шагиева Г.С., Степанова Е.В., Титова Е.В., Ткачук В.А., Васильев Ю.М., Скулачев В.П. (2008) Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения 3. SkQ1 подавляет развитие опухолей из p53-дефицитных клеток. Биохимия 73, 1622–1640.

[405] Аникин И.В., Попович И.Г., Тындык М.Л., Забежинский М.А., Юрова М.Н., Скулачев В.П., Анисимов В.Н. (2013) Влияние нацеленного на митохондрии производного пластохинона SkQ1 на канцерогенез мягких тканей, индуцированный бенз(а)пиреном у мышей. Вопросы онкологии 59, 1, 89–93.

[406] Анисимов В.Н. (2003) Молекулярные и физиологические механизмы старения, 1-ое изд., Наука. СПб.

[407] Анисимов В.Н. (2008) Молекулярные и физиологические механизмы старенияб 2-ое изд., Наука. СПб.

[408] Анисимов В.Н., Бакеева Л.Е., Егормин П.А., Филенко О.Ф., Исакова Е.Ф., Манских В.Н., Михельсон В.М., Пантелеева А.А., Пасюкова Е.Г., Пилипенко Д.И., Пискунова Т.С., Попович И.Г., Рощина Н.В., Рыбина О.Ю., Сапрунова В.Б., Самойлова Т.А., Семенченко А.В., Скулачев М.В., Спивак И.М., Цыбулько Е.А., Тындык М.Л., Высоких М.Ю., Юрова М.Н., Забежинский М.А., Скулачев В.П. (2008) Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения 5. SkQ1 увеличивает продолжительность жизни и предотвращает развитие признаков старения. Биохимия 73, 12, 1655–1670.

[409] Антоненко Ю.Н., Аветисян А.В., Бакеева Л.Е., Черняк Б.В., Чертков В.А., Домнина Л.В., Иванова О.Ю., Изюмов Д.С., Хайлова Л.С., Клишин С.С., Коршунова Г.А., Лямзаев К.Г., Мунтян М.С., Непряхина O.K., Пашковская А.А., Плетюшкина О.Ю., Пустовидко A. В., Рогинский В.А., Рокицкая Т.И., Рууге Э.К., Сапрунова В.Б., Северина И.И., Симонян Р.А., Скулачев И.В., Скулачев М.В., Сумбатян Н.В., Свиряева И.В., Ташлицкий В.Н., Васильев Ю.М., Высоких М.Ю., Ягужинский Л.С., Замятнин А.А.м., Скулачев В.П. (2008) Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. 1. Катионные производные пластохинона: синтез и исследование in vitro. Биохимия 73, 12, 1589–1606.

[410] Бакеева Л.Е., Барсков И.В., Егоров М.В., Исаев Н.К., Капелько B. И., Казаченко А.В., Кирпатовский В.И., Козловский С.В., Лакомкин В.Л., Левина С.В., Писаренко О.И., Плотников Е.Ю., Сапрунова В.Б., Серебрякова Л.И., Скулачев М.В., Стельмашук Е.В., Студнева И.М., Цкитишвили О.В., Васильева А.К., Викторов И.В., Зоров Д.Б., Скулачев В.П. (2008) Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. Терапия некоторых старческих патологий, опосредованных АФК (сердечной аритмии, инфарктов сердца и почки и инсульта головного мозга). Биохимия 73, 12, 1607–1621.

[411] Гаврилова Н.С., Гаврилов Л.А., Северин Ф.Ф., Скулачев В.П. (2012) Старение — запрограммированный или стохастический процесс: сравнение изменчивости возраста смерти, менопаузы и полового созревания. Биохимия 77, 7, 907–915.

[412] Геодакян В.А. (1991) Эволюционная теория пола. Природа 8, 60–69.

[413] Гольдштейн Н.И. (2002) Активные формы кислорода как жизненно необходимые компоненты воздушной среды. Биохимия 67, 2, 194204.

[414] Демьяненко И.А., Васильева Т.В., Домнина Л.В., Дугина В.Б., Егоров М.В., Иванова О.Ю., Ильинская О.П., Плетюшкина О.Ю., Попова Е.Н., Сахаров И.Ю., Федоров А.В., Черняк Б.В. (2010) Новые митохондриально-направленные антиоксиданты на основе "ионов Скулачева" ускоряют заживление кожных ран у животных. Биохимия 75, 274–280.

[415] Дзюбинская Е.В., Ионенко И.Ф., Киселевский Д.Б., Самуилов В.Д., Самуилов Ф.Д. (2013) Митохондриально-адресованные катионы замедляют старение и гибель листьев Arabidopsis thaliana, увеличивают вегетационный период и улучшают структуру урожая пшеницы Triticum aestivum. Биохимия 78, 1, 92–99.

[416] Дильман В.М. (1982) Большие биологические часы, Знание. Москва.

[417] Докинз Р. (2010) Расширенный фенотип. Длинная рука гена., Астрель. Москва.

[418] Зоров Д.Б., Плотников Е.Ю., Янкаускас С.С., Исаев Н.К., Силачев Д.Н., Зорова Л.Д., Певзнер И.Б., Пулькова Н.В., Зоров С.Д., Моросанова М.А. (2012) Феноптозная проблема: от чего гибнет организм? Уроки по почечной недостаточности. Биохимия 77, 7, 893–907.

[419] Капай Н.А., Исаев Н.К., Стельмашук Е.В., Попова О.В., Зоров Д.Б., Скребицкий В.Г., Скулачев В.П. (2011) Митохондриальноадресованное производное пластохинона, антиоксидант SkQR1, введенный in vitro, предотвращает нарушение длительной потенциации, вызванное ?-амилоидом в срезах гиппокампа Биохимия 76, 12, 1695–1699.

[420] Карцев В.М. (2013) Новая концепция жизни: общественные насекомые. Отеч. записки 56, 5, 119–133.

[421] Либберт А. (1976) Физиология растений, Мир. Москва.

[422] Либертини Г. (2012) Классификация явлений феноптоза. Биохимия 77, 7, 847–858.

[423] Либертини Г. (2012) Феноптоз — еще один специализированный неологизм или признак начинающейся революции? Биохимия 77, 7, 956–960.

[424] Лихтенштейн А.В. (2005) Рак как программируемая гибель организма. Биохимия 70, 1277–1288.

[425] Манских В.Н. (2004) Очерки эволюционной онкологии, СибГМУ. Томск.

[426] Манских В.Н. (2008) Гипотеза: фагоцитоз абберантных клеток защищает долгоживущие виды позвоночных от опухолей. Успехи геронтологии 21, 1, 27–33.

[427] Мечников И.И. (1964) Этюды оптимизма, Из-во АН СССР. Москва.

[428] Муфазалов И.А., Пеньков Д.Н., Черняк Б.В., Плетюшкина О.Ю., Высоких М.Ю., Кирпичников М.П., Долгих Д.А., Круглов А.А., Купраш Д.В., Скулачев В.П., Недоспасов С.А. (2009) Получение и характеристика мышиных эмбриональных фибробластов с мутацией K72W в соматическом гене цитохрома с. Мол биол 43, 648–656.

[429] Нероев В.В., Архипова М.М., Бакеева Л.Е., Фурсова А.Ж., Григорян Е.Н., Гришанова А.Ю., Иомдина Е.Н., Иващенко Ж.Н., Катаргина Л.А., Хорошилова-Маслова И.П., Килина О.В., Колосова Н.Г., Копенкин Е.П., Коршунов С.С., Ковалева Н.А., Новикова Ю.П., Филиппов П.П., Пилипенко Д.И., Робустова О.В., Сапрунова В.Б., Сенин И.И., Скулачев М.В., Сотникова Л.Ф., Стефанова Н.А., Тихомирова Н.К., Цапенко И.В., Щипанова А.И., Зиновкин Р.А., Скулачев В.П. (2008) Производное пластохинона, адресованное в митохондрии, как средство, прерывающее программу старения. 4. Связанные с возрастом заболевания глаз. SkQ возвращает зрение слепым животным. Биохимия 73, 1641–1654.

[430] Несис К.Н. (1997) Жестокая любовь кальмаров. Российская наука: выстоять и возродиться, 358–365. Наука. Физматиздат

[431] Падалко В.И. (2005) Разобщитель окислительного фосфорилирования продлевает жизнь дрозофил. Биохимия 70, 9, 1193–1197.

[432] Плотников Е.Ю., Силачев Д.Н., Чупыркина А.А., Даньшина М.И., Янкаускас С.С., Моросанова М.А., Стельмашук Е.В., Васильева А.К., Горячева Е.С., Пирогов Ю.А., Исаев Н.К., Зоров Д.Б. (2010) Новое поколение Скулачев-ионов обладающих выраженным нефро- и нейропротекторным действием. Биохимия 75, 2, 177–184.

[433] Плотников Е.Ю., Силачев Д.Н., Янкаускас С.С., Рокицкая Т.И., Чупыркина А.А., Певзнер И.Б., Зорова Л.Д., Исаев Н.К., Антоненко Ю.Н., Скулачев В.П., Зоров Д.Б. (2012) Частичное разобщение дыхания и фосфорилирования как один из путей реализации нефро- и нейропротекторного действия проникающих катионов семейства SkQ. Биохимия 77, 9, 1240–1250.

[434] Северин С.Е., Скулачев В.П., Ягужинский Л.С. (1970) Возможная роль карнитина в транспорте жирных кислот через митохондриальную мембрану. Биохимия 35, 1250–1252.

[435] Северин Ф.Ф., Скулачев В.П. (2009) Запрограммированная клеточная смерть как мишень борьбы со старением. Успехи геронтол 22, 1, 37–48.

[436] Северин Ф.Ф., Фенюк Б.А., Скулачев В.П. (2013) Возможная роль гликирования белков в устройстве "больших биологических часов". Биохимия 78, 9, 1331–1336.

[437] Скулачев В.П. (1999) Феноптоз: запрограммированная смерть организма. Биохимия 64, 1679–1688.

[438] Скулачев В.П. (2001) Старение организма — частный случай феноптоза. Сорос обр ж 7, 10, 7-11.

[439] Скулачев В.П. (2005) Старение как атавистическая программа, которую можно отменить. Вестник РАН 75, 9, 831–843.

[440] Скулачев В.П. (2007) Попытка биохимиков атаковать проблему старения: "мегапроект" по проникающим ионам. Первые итоги и перспективы. Биохимия 72, 12, 1700–1714.

[441] Скулачев В.П. (2009) Предисловие. Рос хим ж 53, 3, 3.

[442] Скулачев В.П. (2012) Что такое "Феноптоз" и как с ним бороться? Биохимия 77, 7, 827–846.

[443] Скулачёв В.П. (1997) Старение организма — особая биологическая функция, а не результат поломки сложной биологической системы: биохимическое обоснование гипотезы Вейсмана. Биохимия 62, 12, 1394–1399.

[444] Скулачев В.П., Богачев А.В., Каспаринский Ф.О. (2010) Мембранная биоэнергетика, Из-во МГУ. Москва.

[445] Умов Н.А. (1993) Эволюция мировоззрений в связи с учением Дарвина. в сб Русский космизм: Антология философской мысли (Семенова, С.Г., Гачева, А.Г.), 115. Педагогика-пресс, Москва.

[446] Хохлов А.Н. (2009) Нужна ли старению собственная программа или ему вполне достаточно имеющейся программы развития? Рос хим ж ЫН, 3, 111–117.

[447] Черкашина Д.В., Сосимчик И.А., Семенченко О.А., Волина В.В., Петренко А.Ю. (2011) Производное поластохинона SkQ1, адресованное в митохондрии, снижает ишемически-реперфузионные повреждения печени при гипотермическом хранении для трансплантации. Биохимия 76, 9, 1254–1263.

[448] Чижевский А.Л. (1989) Аэроионификация в народном хозяйстве. 2е изд, Стройиздат. Москва.

[449] Шопенгауэр А. (1993) Мир как воля и представление, Московский клуб. Москва.

[450] Эмануэль Н.М. (1975) Некоторые молекулярные механизмы и перспективы профилактики старения. Изв. АН СССР 4, 785-794

[451] Юрова М.Н., Забежинский М.А., Пискунова Т.С., Тындык М.Л., Попович И.Г., Анисимов В.Н. (2010) Влияние митохондриального антиоксиданта SkQ1 на старение, продолжительность жизни и спонтанный канцерогенез у мышей трех линий. Успехи геронтол 23, 3, 430–441.

[452] Яни Е.В., Катаргина Л.А., Чеснокова Н.Б., Безнос О.В., Савченко А.Ю., Выгодин Е.Ю., Гудкова Е.Ю., Замятнин А.А.м., Скулачев М.В. (2012) Первый опыт использования препарата Визомитин в терапии "сухого глаза". Практич мед 1, 59, 134–137.

[453] Янкаускас С.С., Плотников Е.Ю., Моросанова М.А., Певзнер И.Б., Зорова Л.Д., Скулачев В.П., Зоров Д.Б. (2012) Митохондриальноадресованный антиоксидант SkQR1 предотвращает вызванную гентамицином почечную недостаточность и потерю слуха. Биохимия 77, 6, 818–823.

Похожие книги из библиотеки