Проводники возбуждения
Начнем с того, что белые или серовато-белые тяжи, связывающие центральную нервную систему с периферическими органами, мышцами и кожным покровом и названные еще во времена Гиппократа нервами, являются весьма сложными анатомическими образованиями. Они состоят из большого числа нервных волокон — отростков (аксонов и длинных дендритов) нервных клеток, образующих пучки различной толщины, причудливо переплетающиеся внутри нервного ствола. Соединительная оболочка (периневрий) окутывает каждый нерв. Одни нервные волокна, обычно более толстые, также покрыты своеобразной оболочкой, другие — более тонкие — такой оболочки не имеют. Первые получили название миелиновых, или мякотных, вторые — безмякотных, или ремаковских — по имени описавшего их в 1838 г. ученого. Миелин — сложное жироподобное вещество, содержащееся в особых, так называемых шванновских клетках, образующих оболочку нервного волокна. Оно придает белый цвет нерву и белому веществу мозга, состоящему из сплетения нервных волокон и нервных клеток. Но миелиновая оболочка не покрывает непрерывным чехлом нервное волокно. Примерно каждые 2 мм она истончается и образует перехваты Ранвье, являющиеся чем-то вроде силовых подстанций при прохождении импульса по нервному волокну, Безмякотные нервные волокна покрыты тонкой перепонкой — неврилеммой. По аналогии с электрическим кабелем нервные стволы, состоящие из ремаковских волокон, нередко называют кабельными системами.
Нервные волокна, как показали исследования различных авторов, неодинаковы по своему строению, диаметру и проводимости.
В зависимости от того, передают ли нервы импульсы из центральной нервной системы на периферию или с периферии в центральную нервную систему, они делятся на две большие группы: центростремительные (чувствительные) и центробежные (двигательные) нервные волокна.
От спинного мозга на уровне каждого позвонка отходит 31 пара нервных стволов. Каждый из этих стволов образуется двумя спинномозговыми корешками — передними и задними. Но, несмотря на одинаковый вид, эти корешки существенно отличаются друг от друга. Передние корешки выходят из спинного мозга. Образующие их клетки лежат в передних рогах серого вещества спинного мозга, и импульсы, возникающие в центральной нервной системе, поступают на периферию по нервным волокнам передних корешков. Задние корешки входят в спинной мозг. Образующие их нервные клетки лежат вне центральной системы, в межпозвоночных узлах. Через задние корешки поступают в спинной мозг импульсы, возникшие на периферии. Нервные клетки межпозвоночных узлов имеют два отростка, Один из отростков связан с периферическим воспринимающим прибором, другой — с задним рогом серого вещества спинного мозга. На рис. 6 представлена схема чувствительных путей, начиная с воспринимающего прибора и кончая нервным центром. С правой стороны изображены уже частично знакомые читателю рецепторы, воспринимающие раздражения с кожи и из внутренних органов. Здесь нарисованы кожные чувствительные тельца (1 ), мышечные (2 ) и сухожильные (3 ) рецепторы, нервные окончания слизистой оболочки глаза (4 ), чувствительные диски (5 ) и свободные нервные окончания (6 ). Нервные волокна попадают сначала в межпозвоночные узлы (изображенные в виде кружков в верхней части рисунка), а затем вступают через задние корешки в серое вещество спинного мозга, образуя в нем многочисленные нервные сплетения. И уже из передних рогов серого вещества выходят двигательные нервные волокна.
Внешне все спинномозговые нервы сходны между собой, но имеют различную толщину в зависимости от размеров области, в которой данный нерв разветвляется. Наибольший диаметр у крестцовых нервов, предназначенных для конечностей. За ними следуют нижние шейные нервы, разветвляющиеся в верхних конечностях. Наиболее тонкими являются нервы копчиковые.
Рис. 6 Рецепторы и чувствительные пути (схема)
В начале XIX в. французский физиолог Франсуа Мажанди доказал, что передние корешки содержат только центробежные (двигательные) волокна, а задние корешки — только волокна центростремительные (чувствительные). Если перерезать у лягушки передние корешки, снабжающие нервными волокнами одну из конечностей, сразу наступает полный паралич. Лягушка не в состоянии пошевелить конечностью, подтянуть ее, сделать прыжок. Безжизненно и беспомощно свисает ее лапка. И несмотря на это, чувствительность в ней хорошо сохраняется. Попробуем положить на кожу парализованной лапки кусочек фильтровальной бумажки, смоченный слабым раствором кислоты. Лягушка тотчас же начинает двигаться, меняет позу, пытается сбросить бумажку здоровой лапкой. Она чувствует боль, но не в состоянии от нее избавиться.
Иначе обстоит дело при перерезке задних корешков. Положенный на кожу кусочек смоченной кислотой бумажки не вызывает болевого ощущения. Лягушка правильно держит лапку, легко ее подтягивает, совершает прыжки, но не чувствует боли.
Эти факты позволили сформулировать основное положение, известное в физиологии под названием закона Белла — Мажанди (шотландский анатом Белл, независимо от Мажанди описал сходные закономерности). Согласно этому закону, центростремительные волокна вступают в мозг через задние корешки, а центробежные волокна выходят из мозга через передние корешки. Со времени открытия этого закона прошло уже полтора столетия — и все же, несмотря на большое число проведенных опытов и не меньшее число возражений, никому не удалось его опровергнуть. Некоторые исследователи обнаружили, что раздражение передних корешков сопровождается ощущением боли. Казалось, что в законе Белла — Мажанди обнаружилась брешь. Но вскоре было установлено, что чувствительные волокна, содержащиеся в двигательных нервных стволах, попадают в мозг только через задние корешки. Они начинаются в болевых рецепторах мозговых оболочек, по пути присоединяются к двигательным нервам, но вскоре загибаются и, сделав петлю, вступают через задние корешки в серое вещество спинного мозга.
Болевое ощущение, возникающее при раздражении слабым электрическим током передних, двигательных корешков, зависит нередко и от других причин: возбуждение центробежных нервов вызывает судорожное сокращение мышц, при этом раздражаются мышечные воспринимающие приборы, которые посылают по задним корешкам болевые сигналы в центральную нервную систему.
В специальной физиологической и медицинской литературе не раз появлялись указания, что закон Белла — Мажанди не абсолютен. Но, как бы то ни было, боль передается в центральную нервную систему только через задние спинномозговые корешки. Путь болевого раздражения в настоящее время изучен довольно подробно. Это болевой рецептор — чувствительное волокно — центральная нервная система. От воспринимающего прибора по нервному волокну, от одной нервной клетки к другой, пробегая по аксонам через синапсы, процесс возбуждения доходит до нервных центров.
Само собой разумеется, не все болевые импульсы поступают предварительно в спинной мозг. Помимо 31 пары спинномозговых нервов, имеется еще 12 пар черепно-мозговых, часть которых передает ощущения непосредственно в головной мозг. К ним относятся в первую очередь обонятельные, зрительные, слуховые, частично тройничные, лицевые и блуждающие нервы.
Если перерезать все задние корешки, снабжающие чувствительными нервами конечности собаки, то в первое время после операции животное теряет способность ходить. Лапы становятся нечувствительными, и животное не получает от них необходимой информации. Собака волочит лапы и лишь через некоторое время вновь приобретает способность управлять ими.
То же самое происходит у человека. После впрыскивания новокаина в кожу руки, т.е. после того как чувствительные импульсы перестали поступать в нервную систему, человек теряет способность производить рукой согласованные движения, например, писать или играть на пианино. Отсутствие чувствительности нарушает двигательный процесс.
Последовательная перерезка задних чувствительных корешков показала, что каждый из них снабжает нервными волокнами определенную область кожной поверхности. В опытах на обезьянах было установлено, что каждый участок кожи получает нервные волокна, по крайней мере, от двух, если не от трех нервных корешков.
Определенные участки поверхности тела, посылающие информацию в спинной мозг через тот или иной задний корешок, носят название дерматом. Однако нет ни одного чувствительного участка, которые не перекрывал бы соседний. Чувствительные нервные волокна каждой дерматомы направляют нервные импульсы по двум или трем нервным проводникам. И когда одно нервное волокно по какой-либо причине выходит из строя, болевые раздражения передаются в центральную нервную систему по соседним стволам и корешкам.
Если перерезать чувствительный нерв, снабжающий своими ветвями определенную область кожи, она теряет Солевую чувствительность только в центральной части, но сохраняет ее по краям. Это объясняется тем, что кожные дерматомы перекрывают друг друга и ветви нервов, расположенные рядом, образуют переплетающуюся густую сеть с причудливыми очертаниями. Рис. 7 изображает распределение чувствительных участков на поверхности кожи.
Исследования различных ученых, в особенности англичан Гассера и Эрлангера, показали, что проводимость нервных волокон неодинакова и зависит в значительной степени от их диаметра. Установлено, что существует три вида нервных волокон.
Волокна типа А — толстые нервные проводники, передающие двигательные и чувствительные импульсы со скоростью 50—140 м/сек. Волокна покрыты толстой миелиновой оболочкой. Их диаметр 16—20 мк. По диаметру волокна группы А делятся на пять подгрупп (альфа-, бета-, гамма-, дельта-, ипсилон-волокна). При возбуждении этих волокон осциллограф отмечает серию быстрых электрических волн.
Волокна типа В1 диаметром 10—12 мк покрыты тонким слоем миелина. Они передают возбуждение со скоростью 15—35 м/сек. Волокна типа В2 диаметром 5— 6 мк передают возбуждение со скоростью 10—15 м/сек. Для волокон типа В характерны медленные, вялые электрические волны.
Волокна типа С — тонкие безмиелиновые нервные образования с еще более медленными потенциалами. Диаметр их равен 2 мк, а скорость проведения возбуждения 0,6—2 м/сек.
Группа советских исследователей (А. В. Зевеке и др.) обнаружила с помощью чрезвычайно тонкого фотоэлектрического метода особые безмиелиновые волокна, исключительно медленно передающие импульсы с периферии к центру. Скорость проведения в них равна 0,24—0,3 м/сек. Электрические потенциалы возникают в них только при сверхсильных раздражениях, во много раз превышающих обычные. Эти данные подтверждают существование специальных «болевых» нервных волокон.
Как показал Гассер, болевое ощущение передается в центральную нервную систему по волокнам типа А и С. Быстро возникающая первичная боль (например, при булавочном уколе) распространяется по волокнам А : жгучая боль, наступающая после некоторого латентного (скрытого) периода,— по волокнам типа С . Волокна первой группы (так называемые дельта-ипсилон) передают возбуждение быстро, волокна второй группы — медленно, растянуто.
Локализованное (точно очерченное) болевое раздражение поступает в нервную систему по проводникам А и В. Расплывчатое, диффузное — по волокнам группы С. Если проведение болевой информации по волокнам А почему-либо затруднено или вовсе прекратилось, порог чувствительности рецепторов, посылающих сигналы по волокнам С, снижается, и боль приобретает ноюще-жгучий характер. Поэтому алкогольные, мышьяковистые и атеросклеротические невриты сопровождаются жестокими болями, что, видимо, объясняется выпадением сигнализации по системе А.
Благодаря отсутствию оболочки, волокна С легко поддаются выключению при обезболивании новокаином, в то время как волокна типа А и В продолжают сохранять свою чувствительность.
Рис. 7. Дерматомы — области, иннервируемые различными нервами (по Гансену и Шлиаку)
TpI — TpII — ветвями тройничного нерва; Ш1 — Ш3 — шейными нервами; Г1 — Г12 — грудными нервами; П1 — П5 — поясничными нервами; К1 — П5 — крестцовыми нервами
И физиологи, и хирурги хорошо знают, что нервные стволы очень чувствительны к болевым раздражениям. Если во время операции перерезать, потянуть или сжать какой-либо чувствительный нерв, пациент испытывает чувство острой боли, распространяющейся на область, иннервируемую данным нервом.
Раздражение нервного ствола (например, скальпелем во время операции, лекарственными веществами при промывании глубокой раны, ударом и т.д.) вызывает острую боль, что указывает на возникновение в нем процесса возбуждения. Во всех случаях прикосновение к нерву чрезвычайно болезненно. По существу, обнаженный нерв — это тоже рецептор, но измененный и своеобразный, резко отличающийся от обычного. На любое раздражение (легкое прикосновение, нагревание, охлаждение и т.д.) он всегда отвечает одним лишь болевым ощущением.
Иногда импульс возникает в перерезанном нерве (при так называемых фантомных болях) и вызывает ложные ощущения, но такие случаи имеют специальное значение, о них будет сказано в другом месте .
Изучая действие боли на организм, исследователи не могли обойтись без опытов на животных. Физиологам давно известно, что легче всего вызвать у собаки, кошки или крысы сильную боль, раздражая слабым электрическим током седалищный нерв. Этот толстый нервный тяж, расположенный между мышцами задней поверхности бедра, особенно чувствителен к болевому раздражению.
Воспаление седалищного нерва у человека (ишиалгия) — мучительное заболевание, источником которого является нервный ствол. Если проколоть кожу и кончиком иглы коснуться седалищного или локтевого нерва, ощущение острой колющей боли мгновенно пронизывает человека. Жестокие боли испытывает больной, страдающий невралгией тройничного или языко-глоточного нерва.
Почти все кожные нервы чувствительны к боли, в чем легко убедиться, раздражая их слабым электрическим током. При этом боль распространяется на всю область кожи, иннервируемую тем или иным центростремительным нервом. Сильную боль можно вызвать также, раздражая нервные волокна, снабжающие мышцы.
В последние годы было установлено, что боль может передаваться и по сплетениям чрезвычайно тонких нервных волокон, заложенных в стенках артерий. Этот нервный путь сопровождает артериальный ствол по всей его длине и является, по-видимому, вспомогательным проводником боли. Так, известны случаи, когда в конечности сохранялись болевые ощущения, хотя чувствительный нерв был перерезан. Болевые ощущения обострялись при сжатии артериальной стенки и ослабевали, если была произведена операция удаления с поверхности артериальной стенки нервных сплетений — так называемая денервация артерий.
Каким же образом передаются сигналы от рецепторов в центральную нервную систему? Существуют ли методы исследования, которые показали бы, что действительно при раздражении воспринимающих приборов сигналы передаются по нервным стволам и центральная нервная система принимает их от кожи, мышц, внутренних органов и отвечает на них?
Способностью реагировать на возбуждение обладает каждая точка нерва. Слабый электрический ток, давление, действие какого-нибудь химического вещества вызывают раздражение нерва и распространение возбуждения. Но в обычных условиях импульсы никогда не возникают подобным образом. Возбуждение начинается, как правило, с нервных окончаний и по нервному стволу передается в центральную нервную систему.
В течение многих лет нервные импульсы оставались загадкой, так как нельзя было обнаружить каких-либо видимых признаков продвижения их по нерву. Даже наблюдения под микроскопом не обнаруживают в нервном волокне заметных изменений. Поэтому физиологи думали раньше, что нервы являются пассивными проводниками, позволяющими возбуждению, возникшему при раздражении, передвигаться от одного конца нерва к другому. Долгое время считалось, что нервные импульсы — это проходящий сквозь невидимые поры нерва поток особой жидкости, которую называли «животной силой», или «жизненным духом», и поведение которой считалось сходным с поведением воды, бегущей по трубам.
Шли годы, и под напором фактов, новых открытий и теоретических построений от всех этих домыслов пришлось отказаться. Начался новый период в истории физиологии. Нервное волокно стали сравнивать с металлической проволокой, а нервный импульс — с электрическим током. Однако и это оказалось неправильным, хотя каждый нервный импульс, как это доказано, сопровождается химическими и электрическими изменениями в нервных волокнах. При помощи специальных электроизмерительных приборов физиологи показали, что электрические изменения в нерве (или, как их называют, токи действия) проносятся по нерву вслед за возбуждением с той. же скоростью, что и нервный импульс. Работы русских ученых (В. К). Чаговца, А. Ф. Самойлова, И. Е. Введенского, И. С. Бериташвили, Д. С. Воронцова), исследования шведского физиолога Гранита, австралийского физиолога Экклса и др. способствовали выяснению сущности и механизма электрических явлений при нервном возбуждении.
В настоящее время имеется возможность зарегистрировать токи действия в тканях и тем самым показать, что возбуждение движется по нерву с определенной скоростью и в определенном направлении. Чтобы обнаружить существование токов действия, применяют специальные приборы, усиливающие эти токи во много раз.
При возбуждении одного нервного волокна в нем возникает ток напряжением в 0,0001—0,0002 в . Естественно, что для того, чтобы уловить этот ток каким-нибудь измерительным прибором, необходимо усилить его во много раз. Мощные усилители, построенные на электронных лампах и транзисторах, употребляются во всех физиологических лабораториях, и им в значительной степени обязаны мы нашими знаниями о проведении возбуждения в нервном волокне и в нервном стволе.
Электрофизиологи научились регистрировать токи действия не только в одиночном нервном волокне, но и в отдельных нейронах коры головного мозга, зрительных бугров, подбугорья, ретикулярной формации, в клетках нервных узлов, в проводящих путях мозга и т.д. С этой целью также применяются мощные усилители и специальные записывающие приборы, называемые осциллографами. С помощью всех этих сложных и чрезвычайно чувствительных аппаратов удается записать на бумаге или на фотографической пленке токи действия в нервных волокнах при раздражении рецепторов кожи, подкожной клетчатки, мышц, внутренних органов и т.д.
Если надавить подошвенную подушечку задней конечности кошки металлической пластинкой, то в нерве, отходящем от кожи, сразу возникает поток импульсов, который можно увидеть при помощи специальных усилителей на экране осциллографа. Это говорит о том, что рецепторы давления передают соответствующие сигналы в центральную нервную систему. При каждом сигнале возникает слабый электрический ток, который через усилитель и осциллограф записывается в виде одиночного зубца.
Еще в 1926 г. Эдриан показал, что интенсивность раздражения регистрируется в виде изменения частоты нервных импульсов. Если слегка коснуться подошвенной подушечки кошки, то в нерве регистрируется быстрый, но кратковременный взрыв импульсов.
Это явление длится не дольше одной пятой секунды и тотчас же затухает. Следовательно, мы записывали возбуждение рецепторов прикосновения. Центральная нервная система получает от них непродолжительный, но вполне достаточный для восприятия сигнал.
За последнее время хорошо изучены электрические потенциалы, возникающие при механических, термических, электрических и химических раздражениях рецепторов. Получены убедительные данные, показывающие, что рецепторы специфичны и отвечают только на адекватные воздействия ( рис. 8 ). Если медленно втыкать острую иглу в подошвенную подушечку кошки, то в чувствительном нерве возникает ряд довольно беспорядочных, медленных импульсов. Эти импульсы отличаются от описанных выше своей силой и продолжительностью. По-видимому, для того, чтобы в центральной нервной системе сформировалось ощущение боли, необходим «массивный» и длительный залп импульсов. Эта «массивность» позволяет ему проникнуть в такие отделы нервной системы, которые недоступны для короткого разряда.
Игго утверждает, что с волокон типа С, передающих болевое раздражение, можно записать до 100 импульсов в 1 сек. В то же время при раздражении механорецепторов, передающих сигналы прикосновения или давления, число импульсов в нерве не превышает 15—40 импульсов в 1 сек.
Рис. 8. Электрическая активность безмякотного нервного волокна при тепловом раздражении кожи. Число разрядов увеличивается по мере повышения температуры раздражителя (от 40 до 68°)
Интересные результаты получил в 1966 г. американский физиолог Скотт. Он раздражал пульпу зуба у кошек и записывал возникающие при этом электрические потенциалы. Как известно, любое раздражение пульпы вызывает боль. Оказалось, что достаточно повысить температуру зуба на 0,1° С, чтобы число регистрируемых электрических разрядов значительно увеличилось. Если температура повысилась на 3,5° С, удается записать до 200— 250 импульсов в 1 секунду.
Запись электрических потенциалов с рецепторов и одиночных нервных волокон позволяет регистрировать еще одно хорошо известное физиологам явление — адаптацию рецепторов . Установлено, что разряд электрических импульсов, возникающий в нервном волокне при раздражении рецепторов, постепенно затухает. Число одиночных сигналов уменьшается, наступает период адаптации. Существуют быстро и медленно адаптирующиеся рецепторы. Наиболее медленно адаптируются холодовые рецепторы. Они способны давать разряды в течение нескольких минут. Медленно адаптируются рецепторы растяжения во внутренних органах.
Игго, изучая адаптацию рецепторов волосяных луковиц кошки, кролика и обезьяны, сделал вывод, что медленно адаптирующиеся рецепторы относятся к двум типам (I и II), различающимся характером электрического ответа и, по-видимому, некоторыми особенностями строения.
Химические и электрические изменения в нерве, возникающие при прохождении импульса, доказывают, что нерв нельзя рассматривать как пассивный проводник, нечто вроде проволоки или кабеля, по которому распространяется «жизненная сила». Нервные волокна, как показали опыты на животных, активно участвуют в распространении импульсов.
Английский физиолог Гассер сравнивает электрические явления в нервах с тиканьем часов. И то и другое является лишь внешним выражением каких-то внутренних механизмов. В основе электрических явлений лежат сложнейшие химические реакции, совершающиеся в клетках и волокнах. По мере прохождения импульса вдоль нервного волокна в нем последовательно возникают электрические и химические изменения. При помощи тонких и чувствительных методов установлено, что при возбуждении в нерве значительно усиливается обмен веществ. Потребление кислорода возрастает на 20—30%, увеличивается выделение углекислоты и аммиака и даже повышается температура, хотя и очень незначительно.
* * *
И наконец, несколько заключительных слов. Современная наука вооружила физиологию и медицину столь тонкими методами исследования животного организма, что подчас они кажутся фантастическими. Применение их для изучения функций центральной и периферической нервной системы, состава крови, состояния сердца, сосудов, легких, желудочно-кишечного тракта стало возможным благодаря блестящим достижениям техники, электроники, кибернетики, бионики. По типу и характеру электрической активности мы судим о состоянии и деятельности головного мозга, сердечно-сосудистой системы, мышц, нервов. Зонд, введенный через вены руки в полости сердца, радиопилюли, «странствующие» по желудку и кишечнику и подающие сигналы о протекающих в них процессах, диагностические машины, искусственные органы, методы реанимации и многое другое — все это пришло в клинику из физиологических лабораторий, это результаты самоотверженного труда целого ряда поколений экспериментаторов, широкого использования смежных наук.
Но подчас это обилие знаний приводит к односторонним и упрощенным выводам. Читатель может сделать вывод, что резкое учащение импульсов, поступающих в центральную нервную систему, и является причиной возникновения болевого ощущения. Чем больше сигналов, тем сильнее, казалось бы, боль. На самом деле это совсем не так! Возбуждение рецепторов и нервных проводников — только первый, начальный этап боли. Частота электрических разрядов в рецепторе, нервном стволе, нейроне — своеобразный код передачи информации. Но комплексное интегративное чувство боли, формирующееся в центральных нервных структурах, гораздо сложнее и не сводится к элементарному «декодированию» поступающих электрических импульсов.
Из года в год, от одной конференции к другой исследователи начинают переосмысливать электрофизиологические явления в происхождении болевого синдрома. Вряд ли «различные электрофизиологические феномены являются непосредственной причиной возникновения чувства боли. «Нам кажется, что в этом смысле особенно мала роль параметра частоты импульсации»,— говорит советский ученый П. К. Анохин в предисловии к сборнику «Нервные механизмы боли и зуда», изданному в 1962 г. Эти мысли прозвучали и на Парижском симпозиуме по боли 1967 г.
Нельзя не признать, что, изучая периферические механизмы болевого ощущения, физиологи и врачи далеки от понимания его сущности. Поэтому не будем торопиться и попытаемся найти решение в следующих главах.