3. Как не умереть от заболеваний головного мозга
‹‹1››. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
‹‹2››. Centers for Disease Control and Prevention. Deaths: final data for 2013 table 10. Number of deaths from 113 selected causes. National Vital Statistics Report 2016;64(2).
‹‹3››. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.
‹‹4››. Grau-Olivares M, Arboix A. Mild cognitive impairment in stroke patients with ischemic cerebral small- vessel disease: a forerunner of vascular dementia? Expert Rev Neurother. 2009; 9(8):1201–17.
‹‹5››. Aune D, Chan DS, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617.
‹‹6››. Aune D, Chan DS, Greenwood DC, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23(6):1394–402.
‹‹7››. Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29(2):79–88.
‹‹8››. Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.
‹‹9››. Maskarinec G, Takata Y, Pagano I, et al. Trends and dietary determinants of overweight and obesity in a multiethnic population. Obesity (Silver Spring). 2006;14(4):717–26.
‹‹10››. Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73.
‹‹11››. Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke. 2013;44(5):1360–8.
‹‹12››. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012;142(7):1390S–401S.
‹‹13››. Threapleton DE, Greenwood DC, Evans CE, et al. Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis. Stroke. 2013;44(5):1360–8.
‹‹14››. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering Effects of oat ?-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100(6):1413–21.
‹‹15››. Silva FM, Kramer CK, De Almeida JC, Steemburgo T, Gross JL, Azevedo MJ. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with metaanalysis of randomized controlled trials. Nutr Rev. 2013;71(12):790–801.
‹‹16››. Streppel MT, Arends LR, van ’t Veer P, Grobbee DE, Geleijnse JM. Dietary fiber and blood pressure: a meta-analysis of randomized placebo-controlled trials. Arch Intern Med. 2005; 165(2):150–6.
‹‹17››. Centers for Disease Control and Prevention. Deaths: final data for 2013 table 10. Number of deaths from 113 selected causes. National Vital Statistics Report 2016;64(2).
‹‹18››. van de Laar RJ, Stehouwer CDA, van Bussel BCT, et al. Lower lifetime dietary fiber intake is associated with carotid artery stiffness: the Amsterdam Growth and Health Longitudinal Study. Am J Clin Nutr. 2012;96(1):14–23.
‹‹19››. van de Laar RJ, Stehouwer CDA, van Bussel BCT, et al. Lower lifetime dietary fiber intake is associated with carotid artery stiffness: the Amsterdam Growth and Health Longitudinal Study. Am J Clin Nutr. 2012;96(1):14–23.
‹‹20››. Casiglia E, Tikhonoff V, Caffi S, et al. High dietary fiber intake prevents stroke at a population level. Clin Nutr. 2013;32(5):811–8.
‹‹21››. Tikhonoff V, Palatini P, Casiglia E. Letter by Tikhonoff et al regarding article, «Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis,» Stroke. 2013; 44(9): e109.
‹‹22››. Threapleton DE, Greenwood DC, Burley VJ. Response to letter regarding article, «Dietary fiber intake and risk of first stroke: a systematic review and meta-analysis,» Stroke. 2013; 44(9):e110.
‹‹23››. Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–9.
‹‹24››. Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am J Clin Nutr. 2012;96(3):647–57.
‹‹25››. Cogswell ME, Zhang Z, Carriquiry AL, et al. Sodium and potassium intakes among US adults: NHANES 2003–2008. Am J Clin Nutr. 2012;96(3):647–57.
‹‹26››. D’Elia L, Barba G, Cappuccio FP, et al. Potassium intake, stroke, and cardiovascular disease a meta- analysis of prospective studies. J Am Coll Cardiol. 2011;57(10):1210–9.
‹‹27››. U.S. Department of Agriculture. USDA National Nutrient Database for Standard Reference. http://ndb. nal.usda.gov/ndb/nutrients/index?fg=& nutrient1=306&nutrient2=&nutrient3=&subset=0&sort=c&totC ount=0&offset=0&measureby=g. 2011. Accessed April 1, 2015.
‹‹28››. U.S. Department of Agriculture Dietary Guidelines for Americans 2005. Appendix B-1. Food sources of potassium. http://www.health.gov/dietaryguidelines/dga2005/document/html/appendixb.htm. July 9, 2008. Accessed May 1, 2015.
‹‹29››. Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta- analysis of prospective cohort studies. Stroke. 2014;45(6):1613–9.
‹‹30››. Morand C, Dubray C, Milenkovic D, et al. Hesperidin contributes to the vascular protective Effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr. 2011;93(1):73–80.
‹‹31››. Takumi H, Nakamura H, Simizu T, et al. Bioavailability of orally administered water-dispersible hesperetin and its Effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012;3(4):389–98.
‹‹32››. Patyar S, Patyar RR. Correlation between sleep duration and risk of stroke. J Stroke Cerebrovasc Dis. 2015;24(5):905–11.
‹‹33››. Ikehara S, Iso H, Date C, et al; JACC Study Group. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep. 2009;32(3):295–301.
‹‹34››. Fang J, Wheaton AG, Ayala C. Sleep duration and history of stroke among adults from the USA. J Sleep Res. 2014;23(5):531–7.
‹‹35››. von Ruesten A, Weikert C, Fietze I, et al. Association of sleep duration with chronic diseases in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. PloS ONE. 2012;7(1):e30972.
‹‹36››. Pan A, De Silva DA, Yuan JM, et al. Sleep duration and risk of stroke mortality among Chinese adults: Singapore Chinese health study. Stroke. 2014;45(6):1620–5.
‹‹37››. Leng Y, Cappuccio FP, Wainwright NW, et al. Sleep duration and risk of fatal and nonfatal stroke: a prospective study and meta-analysis. Neurology. 2015;84(11):1072–9.
‹‹38››. Sansevero TB. The Profit Machine. Madrid: Cultiva Libros. 2009;59.
‹‹39››. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7.
‹‹40››. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.
‹‹41››. Emerit I. Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic Biol Med. 1994;16(1):99–109.
‹‹42››. Rautiainen S, Larsson S, Virtamo J, et al. Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. Stroke. 2012;43(2):335–40.
‹‹43››. Del Rio D, Agnoli C, Pellegrini N, et al. Total antioxidant capacity of the diet is associated with lower risk of ischemic stroke in a large Italian cohort. J Nutr. 2011;141(1):118–23.
‹‹44››. Satia JA, Littman A, Slatore CG, Galanko JA, White E. Long-term use of beta-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: results from the VITamins And Lifestyle (VITAL) study. Am J Epidemiol. 2009;169(7):815–28.
‹‹45››. Hankey GJ. Vitamin supplementation and stroke prevention. Stroke. 2012;43(10):2814–8.
‹‹46››. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3.
‹‹47››. Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63.
‹‹48››. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3.
‹‹49››. Bastin S, Henken K. Water Content of Fruits and Vegetables. ENRI-129. University of Kentucky College of Agriculture Cooperative Extension Service. http://www2.ca.uky.edu/enri/pubs/enri129.pdf. December 1997. Accessed March 3, 2015.
‹‹50››. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3.
‹‹51››. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3.
‹‹52››. Kelly PJ, Morrow JD, Ning M, et al. Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke. 2008;39(1):100–4.
‹‹53››. Lilamand M, Kelaiditi E, Guyonnet S, et al. Flavonoids and arterial stiffness: promising perspectives. Nutr Metab Cardiovasc Dis. 2014;24(7):698–704.
‹‹54››. Santhakumar AB, Bulmer AC, Singh I. A review of the mechanisms and Effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. J Hum Nutr Diet. 2014;27(1): 1–21.
‹‹55››. Stoclet JC, Chataigneau T, Ndiaye M, et al. Vascular protection by dietary polyphenols. Eur J Pharmacol. 2004;500(1–3):299–313.
‹‹56››. Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress?. Neurosci Biobehav Rev. 2014;45:46–62.
‹‹57››. Watzl B. Anti-inflammatory effects of plant-based foods and of their constituents. Int J Vitam Nutr Res. 2008;78(6):293–8.
‹‹58››. Franzini L, Ardigi D, Valtue?a S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7.
‹‹59››. Alzheimer’s Association factsheet. http://www.alz.org/documents_custom/2013_facts_figures_fact_sheet.pdf. March 2013. Accessed April 3, 2015.
‹‹60››. de la Torre JC. A turning point for Alzheimer’s disease? Biofactors. 2012;38(2):78–83.
‹‹61››. de la Torre JC. Alzheimer’s disease is incurable but preventable. J Alzheimers Dis. 2010; 20(3):861–70.
‹‹62››. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28.
‹‹63››. Singh-Manoux A, Kivimaki M, Glymour MM, et al. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344:d7622.
‹‹64››. Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44.
‹‹65››. Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35 Suppl 2:S74–8.
‹‹66››. Ramirez-Bermudez J. Alzheimer’s disease: critical notes on the history of a medical concept. Arch Med Res. 2012;43(8):595–9.
‹‹67››. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, «?ber eine eigenartige Erkankung der Hirnrinde.» Clin Anat. 1995; 8(6):429–31.
‹‹68››. Kovacic JC, Fuster V. Atherosclerotic risk factors, vascular cognitive impairment, and Alzheimer disease. Mt Sinai J Med. 2012;79:664–73.
‹‹69››. Cardiogenic Dementia. Lancet. 1977;1(8001):27–8.
‹‹70››. Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44.
‹‹71››. Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44.
‹‹72››. Yarchoan M, Xie SX, Kling MA, et al. Cerebrovascular atherosclerosis correlates with Alzheimer pathology in neurodegenerative dementias. Brain. 2012;135(Pt 12):3749–56.
‹‹73››. Honig LS, Kukull W, Mayeux R. Atherosclerosis and AD: analysis of data from the US National Alzheimer’s Coordinating Center. Neurology. 2005;64(3):494–500.
‹‹74››. de la Torre JC. Vascular risk factors: a ticking time bomb to Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2013;28(6):551–9.
‹‹75››. Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement. 2011;7(4):436–44.
‹‹76››. de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci. 2002;977:196–215.
‹‹77››. Zhu J, Wang Y, Li J, et al. Intracranial artery stenosis and progression from mild cognitive impairment to Alzheimer disease. Neurology. 2014;82(10):842–9.
‹‹78››. Deschaintre Y, Richard F, Leys D, Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73(9):674–80.
‹‹79››. Mizuno T, Nakata M, Naiki H, et al. Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem. 1999;274(21):15110–4.
‹‹80››. Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8.
‹‹81››. Benjamin MM, Roberts WC. Facts and principles learned at the 39th Annual Williamsburg Conference on Heart Disease. Proc (Bayl Univ Med Cent). 2013;26(2):124–36.
‹‹82››. Corsinovi L, Biasi F, Poli G, et al. Dietary lipids and their oxidized products in Alzheimer’s disease. Mol Nutr Food Res. 2011;55 Suppl 2:S161–72.
‹‹83››. Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem. 2010;51:47–75.
‹‹84››. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6(4):345–51.
‹‹85››. Harris JR, Milton NGN. Cholesterol in Alzheimer’s disease and other amyloidogenic disorders. Subcell Biochem. 2010;51:47–75.
‹‹86››. Reed B, Villeneuve S, Mack W, et al. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71(2):195–200.
‹‹87››. US Food and Drug Administration. Important safety label changes to cholesterol-lowering statin drugs. Silver Spring, MD: US Department of Health and Human Ser vices; 2012. http://www.fda.gov/Drugs/ DrugSafety/ucm293101.htm. July 7, 2012. Accessed April 2, 2015.
‹‹88››. Rojas-Fernandez CH, Cameron JC. Is statin-associated cognitive impairment clinically relevant? A narrative review and clinical recommendations. Ann Pharmacother. 2012;46(4): 549–57.
‹‹89››. Grant WB. Dietary links to Alzheimer’s disease. Alzheimer Dis Rev. 1997;2:42–55.
‹‹90››. Chandra V, Pandav R, Dodge HH, et al. Incidence of Alzheimer’s disease in a rural community in India: the Indo-US study. Neurology. 2001;57(6):985–9.
‹‹91››. White L, Petrovitch H, Ross GW, et al. Prevalence of dementia in older Japanese-American men in Hawaii: The Honolulu-Asia aging study. JAMA. 1996;276(12):955–60.
‹‹92››. Grant WB. Dietary links to Alzheimer’s disease. Alzheimer Dis Rev. 1997;2:42–55.
‹‹93››. Grant WB. Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. J Alzheimers Dis. 2014;38(3):611–20.
‹‹94››. Chan KY, Wang W, Wu JJ, et al. Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: A systematic review and analysis. Lancet. 2013;381(9882): 2016–23.
‹‹95››. Grant WB. Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. J Alzheimers Dis. 2014;38(3):611–20.
‹‹96››. Chandra V, Ganguli M, Pandav R, et al. Prevalence of Alzheimer’s disease and other dementias in rural India: the Indo-US study. Neurology. 1998;51(4):1000–8.
‹‹97››. Shetty PS. Nutrition transition in India. Public Health Nutr. 2002;5(1A):175–82.
‹‹98››. Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36.
‹‹99››. Roses AD, Saunders AM. APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol. 1994;5(6):663–7.
‹‹100››. Puglielli L, Tanzi RE, Kovacs DM. Alzheimer’s disease: the cholesterol connection. Nat Neurosci. 2003;6(4):345–51.
‹‹101››. Chen X, Hui L, Soliman ML, Geiger JD. Altered cholesterol intracellular trafficking and the development of pathological hallmarks of sporadic AD. J Parkinsons Dis Alzheimers Dis. 2014;1(1).
‹‹102››. Sepehrnia B, Kamboh MI, Adams-Campbell LL, et al. Genetic studies of human apolipoproteins.X. The effect of the apolipoprotein E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am J Hum Genet. 1989;45(4):586–91.
‹‹103››. Grant WB. Dietary links to Alzheimer’s disease. Alzheimer Dis Rev. 1997;2:42–55.
‹‹104››. Sepehrnia B, Kamboh MI, Adams-Campbell LL, et al. Genetic studies of human apolipoproteins. X. The Effect of the apolipoprotein E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am J Hum Genet. 1989;45(4):586–91.
‹‹105››. Hendrie HC, Murrell J, Gao S, Unverzagt FW, Ogunniyi A, Hall KS. International studies in dementia with particular emphasis on populations of African origin. Alzheimer Dis Assoc Disord. 2006;20(3 Suppl 2):S42–6.
‹‹106››. Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55.
‹‹107››. Kivipelto M, Helkala EL, Laakso MP, et al. Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55.
‹‹108››. Jost BC, Grossberg GT. The natural history of Alzheimer’s disease: a brain bank study. J Am Geriatr Soc. 1995;43(11):1248–55.
‹‹109››. Del Tredici K, Braak H. Neurofi brillary changes of the Alzheimer type in very elderly individuals: neither inevitable nor benign: Commentary on ‘No disease in the brain of a 115-year-old woman.’ Neurobiol Aging. 2008;29(8):1133–6.
‹‹110››. Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35 Suppl 2:S74–8.
‹‹111››. Lourida I, Soni M, Thompson-Coon J, et al. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology. 2013;24(4):479–89.
‹‹112››. Roberts RO, Geda YE, Cerhan JR, et al. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders. 2010;29(5):413–23.
‹‹113››. Okereke OI, Rosner BA, Kim DH, et al. Dietary fat types and 4-year cognitive change in community- dwelling older women. Ann Neurol. 2012;72(1):124–34.
‹‹114››. Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24(5):725–43.
‹‹115››. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res. 2012; 37(9):1829–42.
‹‹116››. Shukitt-Hale B. Blueberries and neuronal aging. Gerontology. 2012;58(6):518–23.
‹‹117››. Cherniack EP. A berry thought-provoking idea: the potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br J Nutr. 2012;108(5):794–800.
‹‹118››. Johnson EJ. A possible role for lutein and zeaxanthin in cognitive function in the elderly. Am J Clin Nutr. 2012;96(5):1161S–5S.
‹‹119››. Krikorian R, Shidler MD, Nash TA, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58(7):3996–4000.
‹‹120››. Devore EE, Kang JH, Breteler MMB, et al. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol. 2012;72(1):135–43.
‹‹121››. Dai Q, Borenstein AR, Wu Y, et al. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med. 2006;119(9):751–9.
‹‹122››. Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103(5):730–4.
‹‹123››. Nurk E, Refsum H, Drevon CA, et al. Cognitive performance among the elderly in relation to the intake of plant foods. The Hordaland Health Study. Br J Nutr. 2010;104(8):1190–201.
‹‹124››. Mullen W, Marks SC, Crozier A. Evaluation of phenolic compounds in commercial fruit juices and fruit drinks. J Agric Food Chem. 2007;55(8):3148–57.
‹‹125››. Tarozzi A, Morroni F, Merlicco A, et al. Neuroprotective Effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. Neurosci Lett. 2010;473(2):72–6.
‹‹126››. Hattori M, Sugino E, Minoura K, et al. Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule-binding domain. Biochem Biophys Res Commun. 2008;374(1):158–63.
‹‹127››. Mandel SA, Weinreb O, Amit T, Youdim MB. Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed). 2012; 4:581–98.
‹‹128››. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–60.
‹‹129››. Hishikawa N, Takahashi Y, Amakusa Y, et al. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012;33(4):499–504.
‹‹130››. Akhondzadeh S, Sabet MS, Harirchian MH, et al. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther. 2010;35(5):581–8.
‹‹131››. Akhondzadeh S, Shafiee Sabet M, Harirchian MH, et al. A 22-week, multicenter, randomized, double- blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology (Berl). 2010;207(4):637–43.
‹‹132››. Hyde C, Peters J, Bond M, et al. Evolution of the evidence on the Effectiveness and costeffectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: systematic review and economic model. Age Ageing. 2013;42(1):14–20.
‹‹133››. US Food and Drug Administation. ARICEPT® (Donepezil Hydrochloride Tablets) package insert. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/DrugM arketingAdvertisingandCommunications/UCM368444.pdf. Accessed April 2, 2015.
‹‹134››. Toledo C, Saltsman K. Genetics by the Numbers. Inside Life Science, Bethesda, MD: National Institute of General Medical Sciences. http://publications.nigms. nih.gov/insidelifescience/genetics-numbers.html. June 11, 2012. Accessed March 3, 2015.
‹‹135››. Mostoslavsky R, Esteller M, Vaquero A. At the crossroad of lifespan, calorie restriction, chromatin and disease: meeting on sirtuins. Cell Cycle. 2010;9(10):1907–12.
‹‹136››. Julien C, Tremblay C, Emond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(1):48–58.
‹‹137››. Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5.
‹‹138››. Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5.
‹‹139››. Rahmadi A, Steiner N, Munch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):385–91.
‹‹140››. Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65(9):963–75.
‹‹141››. Srikanth V, Westcott B, Forbes J, et al. Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol A Biol Sci Med Sci. 2013;68(1):68–73.
‹‹142››. Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5.
‹‹143››. Beeri MS, Moshier E, Schmeidler J, et al. Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev. 2011;132(11–12):583–7.
‹‹144››. Yaffe K, Lindquist K, Schwartz AV, et al. Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology. 2011;77(14):1351–6.
‹‹145››. Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed Res Int. 2014;2014:238485.
‹‹146››. Vlassara H, Cai W, Goodman S, et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab. 2009;94(11):4483–91.
‹‹147››. Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94(25):13915–20.
‹‹148››. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005;1043:461–6.
‹‹149››. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005;1043:461–6.
‹‹150››. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12.
‹‹151››. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12.
‹‹152››. Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12.
‹‹153››. Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5.
‹‹154››. Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.
‹‹155››. Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–9.
‹‹156››. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017–22.
‹‹157››. ten Brinke LF, Bolandzadeh N, Nagamatsu LS, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49(4):248–54.