Другие овощи
‹‹1››. Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA. 2013;310(6):591–608.
‹‹2››. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.
‹‹3››. O’Hara JK. The $11 trillion reward: how simple dietary changes can save lives and money, and how we get there. http://www.ucsusa.org/assets/documents/food_and_agriculture/11-trillion-reward.pdf. August 2013. Accessed April 15, 2015.
‹‹4››. Murakami A, Ohnishi K. Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct. 2012;3(5):462–76.
‹‹5››. Watzl B, Bub A, Brandstetter BR, Rechkemmer G. Modulation of human T-lymphocyte functions by the consumption of carotenoid-rich vegetables. Br J Nutr. 1999;82(5):383–9.
‹‹6››. Willcox JK, Catignani GL, Lazarus S. Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr. 2003;43(1):1–18.
‹‹7››. Dutta-Roy AK, Crosbie L, Gordon MJ. Effects of tomato extract on human platelet aggregation in vitro. Platelets. 2001;12(4):218–27.
‹‹8››. O’Kennedy N, Crosbie L, Whelan S, et al. Effects of tomato extract on platelet function: a double-blinded crossover study in healthy humans. Am J Clin Nutr. 2006;84(3):561–9.
‹‹9››. O’Kennedy N, Crosbie L, van Lieshout M, Broom JI, Webb DJ, Duttaroy AK. Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans. Am J Clin Nutr. 2006;84(3):570–9.
‹‹10››. Fuentes E, Forero-Doria O, Carrasco G, et al. Effect of tomato industrial processing on phenolic profile and antiplatelet activity. Molecules. 2013;18(9):11526–36.
‹‹11››. Nurk E, Refsum H, Drevon CA, et al. Cognitive performance among the elderly in relation to the intake of plant foods. The Hordaland Health Study. Br J Nutr. 2010;104(8):1190–201.
‹‹12››. Putnam J, Alls house J, Kantor LS. U.S. per capita food supply trends: more calories, refined carbohydrates, and fats. FoodReview. 2002;25:2–15.
‹‹13››. Bhupathiraju SN, Tucker KL. Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am J Clin Nutr. 2011;93(1):37–46.
‹‹14››. Cooper AJ, Sharp SJ, Lentjes MA, et al. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care. 2012; 35(6): 1293–300.
‹‹15››. Lichtenstein AH, Appel LJ, Brands M, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):82–96.
‹‹16››. Buchner FL, Bueno-de-Mesquita HB, Ros MM, et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2278–86.
‹‹17››. Dias JS. Nutritional quality and health benefits of vegetables: a review. Food and Nutrition Sciences. 2012;3(10):1354–74.
‹‹18››. Sillanp?? S, Salminen J-P, Eeva T. Breeding success and lutein availability in great tit (Parus major). Acta Oecologica. 2009;35(6):805–10.
‹‹19››. Whitehead RD, Coetzee V, Ozakinci G, Perrett DI. Cross-cultural effects of fruit and vegetable consumption on skin color. Am J Public Health. 2012;102(2):212–3.
‹‹20››. Stephen ID, Law Smith MJ, Stirrat MR, Perrett DI. Facial skin coloration affects perceived health of human faces. Int J Primatol. 2009;30(6):845–57.
‹‹21››. Whitehead RD, Re D, Xiao D, Ozakinci G, Perrett DI. You are what you eat: within-subject increases in fruit and vegetable consumption confer beneficial skin-color changes. PLoS ONE. 2012;7(3):e32988.
‹‹22››. Whitehead RD, Ozakinci G, Stephen ID, Perrett DI. Appealing to vanity: could potential appearance improvement motivate fruit and vegetable consumption? Am J Public Health. 2012; 102(2):207–11.
‹‹23››. Nagata C, Nakamura K, Wada K, et al. Association of dietary fat, vegetables and antioxidant micronutrients with skin ageing in Japanese women. Br J Nutr. 2010;103(10):1493–8.
‹‹24››. Greens to be gorgeous: Why eating your five fruit and veg a day makes you sexy. Daily Mail. http://www.dailymail.co.uk/health/article-1228348/Eating-fruit-veg-makes-attractiveopposite-sex.html. November 17, 2009. Accessed April 14, 2015.
‹‹25››. Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Diff er. 2010;17(7):1134–40.
‹‹26››. Paul BD, Snyder SH. The unusual amino acid L-ergothioneine is a physiologic cytoprotectant. Cell Death Diff er. 2010;17(7):1134–40.
‹‹27››. Berk L, Castle WB. Observations on the etiologic relationship of achylia gastrica to pernicious anemia; activity of vitamin B12 as food, extrinsic factor. N Engl J Med. 1948;239(24):911–3.
‹‹28››. Ey J, Schomig E, Taubert D. Dietary sources and antioxidant effects of ergothioneine. J Agric Food Chem. 2007;55(16):6466–74.
‹‹29››. Nguyen TH, Nagasaka R, Ohshima T. Effects of extraction solvents, cooking procedures and storage conditions on the contents of ergothioneine and phenolic compounds and antioxidative capacity of the cultivated mushroom Flammulina velutipes. Int J Food Sci Tech. 2012;47(6): 1193–205.
‹‹30››. Schulzov? V, Hajslov? J, Peroutka R, Gry J, Andersson HC. Influence of storage and house hold processing on the agaritine content of the cultivated Agaricus mushroom. Food Addit Contam. 2002;19(9):853–62.
‹‹31››. Gry J. Mushrooms traded as food. Vol II sec 2. http://norden.diva-portal.org/smash/get/diva2:733528/FULLTEXT01.pdf. July 18, 2012. Accessed April 15, 2015.
‹‹32››. Mitchell SC. Food idiosyncrasies: beetroot and asparagus. Drug Metab Dispos. 2001;29(4 Pt 2): 539–43.
‹‹33››. Donado-Pestana CM, Mastrodi Salgado J, de Oliveira Rios A, dos Santos PR, Jablonski A. Stability of carotenoids, total phenolics and in vitro antioxidant capacity in the thermal processing of orange-fleshed sweet potato (Ipomoea batatas Lam) cultivars grown in Brazil. Plant Foods Hum Nutr. 2012;67(3):262–70.
‹‹34››. Padda MS, Picha DH. Phenolic composition and antioxidant capacity of different heatprocessed forms of sweetpotato cv. «Beauregard». Int J Food Sci Tech. 2008;43(8):1404–9.
‹‹35››. Bovell-Benjamin AC. Sweet potato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res. 2007;52:1–59.
‹‹36››. Center for Science in the Public Interest. 10 best foods. http://www.nutritionaction.com/freedownloads/what-to-eat-10-best-foods/. Accessed April 15, 2015.
‹‹37››. Wilson CD, Pace RD, Bromfi eld E, Jones G, Lu JY. Consumer acceptance of vegetarian sweet potato products intended for space missions. Life Support Biosph Sci. 1998;5(3):339–46.
‹‹38››. Drewnowski A. New metrics of affordable nutrition: which vegetables provide most nutrients for least cost? J Acad Nutr Diet. 2013;113(9):1182–7.
‹‹39››. Ameny MA, Wilson PW. Relationship between hunter color values and b-carotene contents in white-fleshed African sweet potatoes (Ipomoea batatas Lam). J Sci Food Agric. 1997;73: 301–6.
‹‹40››. Kaspar KL, Park JS, Brown CR, Mathison BD, Navarre DA, Chew BP. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J Nutr. 2011;141(1):108–11.
‹‹41››. Vinson JA, Demkosky CA, Navarre DA, Smyda MA. High-antioxidant potatoes: acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J Agric Food Chem. 2012;60(27):6749–54.
‹‹42››. Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3.
‹‹43››. Vinson JA, Demkosky CA, Navarre DA, Smyda MA. High-antioxidant potatoes: acute in vivo antioxidant source and hypotensive agent in humans after supplementation to hypertensive subjects. J Agric Food Chem. 2012;60(27):6749–54.
‹‹44››. Lim S, Xu J, Kim J, et al. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol Nutr Food Res. 2013;57(11):1908–17.
‹‹45››. Olsen A, Ritz C, Kramer L, M?ller P. Serving styles of raw snack vegetables. What do children want? Appetite. 2012;59(2):556–62.
‹‹46››. Sesame Workshop. «If Elmo eats broccoli, will kids eat it too?» Atkins Foundation grant to fund further research. https://web.archive.org/web/20130125205947 http://archive.sesameworkshop.org/aboutus/insidepress.php?contentId=15092302. September 20, 2005. Accessed June 30, 2015.
‹‹47››. Kros W, Paulis WD, van der Wouden JC. Increasing vegetable intake in Mexican-American youth: design and analysis issues. J Am Diet Assoc. 2011;111(11):1657.
‹‹48››. Fisher JO, Mennella JA, Hughes SO, Liu Y, Mendoza PM, Patrick H. Offering «dip» promotes intake of a moderately-liked raw vegetable among preschoolers with genetic sensitivity to bitterness. J Acad Nutr Diet. 2012;112(2):235–45.
‹‹49››. Isoldi KK, Dalton S, Rodriguez DP, Nestle M. Classroom «cupcake» celebrations: observations of foods offered and consumed. J Nutr Educ Behav. 2012;44(1):71–5.
‹‹50››. Wansink B, Just DR, Payne CR, Klinger MZ. Attractive names sustain increased vegetable intake in schools. Prev Med. 2012;55(4):330–2.
‹‹51››. Wansink B, van Ittersum K, Painter JE. How descriptive food names bias sensory perceptions in restaurants. Food Qual Prefer. 2005;16(5):393–400.
‹‹52››. Wansink B, Just DR, Payne CR, Klinger MZ. Attractive names sustain increased vegetable intake in schools. Prev Med. 2012;55(4):330–2.
‹‹53››. Wansink B, Just DR, Payne CR, Klinger MZ. Attractive names sustain increased vegetable intake in schools. Prev Med. 2012;55(4):330–2.
‹‹54››. Spill MK, Birch LL, Roe LS, Rolls BJ. Hiding vegetables to reduce energy density: an effective strategy to increase children’s vegetable intake and reduce energy intake. Am J Clin Nutr. 2011; 94(3):735–41.
‹‹55››. Blatt AD, Roe LS, Rolls BJ. Hidden vegetables: an effective strategy to reduce energy intake and increase vegetable intake in adults. Am J Clin Nutr. 2011;93(4):756–63.
‹‹56››. Vereecken C, Rovner A, Maes L. Associations of parenting styles, parental feeding practices and child characteristics with young children’s fruit and vegetable consumption. Appetite. 2010; 55(3):589–96.
‹‹57››. World Cancer Research Fund/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington, D.C.: AICR, 2007.
‹‹58››. Annema N, Heyworth JS, McNaughton SA, Iacopetta B, Fritschi L. Fruit and vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case-control study in Western Australia. J Am Diet Assoc. 2011;111(10):1479–90.
‹‹59››. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112:374–80.
‹‹60››. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112:374–80.
‹‹61››. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112:374–80.
‹‹62››. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112:374–80.
‹‹63››. Boivin D, Lamy S, Lord-Dufour S, et al. Antiproliferative and antioxidant activities of common vegetables: a comparative study. Food Chem. 2009;112:374–80.
‹‹64››. Abdull Razis AF, Noor NM. Cruciferous vegetables: dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev. 2013;14(3):1565–70.
‹‹65››. Nicastro HL, Ross SA, Milner JA. Garlic and onions: their cancer prevention properties. Cancer Prev Res (Phila). 2015;8(3):181–9.
‹‹66››. Oude Griep LM, Geleijnse JM, Kromhout D, Ock? MC, Verschuren WM. Raw and processed fruit and vegetable consumption and 10-year coronary heart disease incidence in a populationbased cohort study in the Netherlands. PLoS ONE. 2010;5(10):e13609.
‹‹67››. Gliszczy?ska-Swig?o A, Ciska E, Pawlak-Lema?ska K, Chmielewski J, Borkowski T, Tyrakowska B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit Contam. 2006;23(11):1088–98.
‹‹68››. Ghavami A, Coward WA, Bluck LJ. The effect of food preparation on the bioavailability of carotenoids from carrots using intrinsic labelling. Br J Nutr. 2012;107(9):1350–66.
‹‹69››. Garcia AL, Koebnick C, Dagnelie PC, et al. Long-term strict raw food diet is associated with favourable plasma beta-carotene and low plasma lycopene concentrations in Germans. Br J Nutr. 2008;99(6):1293–300.
‹‹70››. Bohm V, Bitsch R. Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. Eur J Nutr. 1999;38:118–25.
‹‹71››. Kahlon TS, Chiu MM, Chapman MH. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper and cabbage. Nutr Res. 2008;28:351–7.
‹‹72››. Javitt NB, Budai K, Miller DG, Cahan AC, Raju U, Levitz M. Breast-gut connection: origin of chenodeoxycholic acid in breast cyst fluid. Lancet. 1994;343(8898):633–5.
‹‹73››. Stott-Miller M, Neuhouser ML, Stanford JL. Consumption of deep-fried foods and risk of prostate cancer. Prostate. 2013;73(9):960–9.
‹‹74››. Chen MJ, Hsu HT, Lin CL, Ju WY. A statistical regression model for the estimation of acrylamide concentrations in French fries for excess lifetime cancer risk assessment. Food Chem Toxicol. 2012;50(10):3867–76.
‹‹75››. Lineback DR, Coughlin JR, Stadler RH. Acrylamide in foods: a review of the science and future considerations. Annu Rev Food Sci Technol. 2012;3:15–35.
‹‹76››. Jim?nez-Monreal AM, Garc?a-Diz L, Mart?nez-Tom? M, Mariscal M, Murcia MA. Influence of cooking methods on antioxidant activity of vegetables. J Food Sci. 2009;74(3):H97–H103.
‹‹77››. Jim?nez-Monreal AM, Garc?a-Diz L, Mart?nez-Tom? M, Mariscal M, Murcia MA. Influence of cooking methods on antioxidant activity of vegetables. J Food Sci. 2009;74(3):H97–H103.
‹‹78››. Jim?nez-Monreal AM, Garc?a-Diz L, Mart?nez-Tom? M, Mariscal M, Murcia MA. Influence of cooking methods on antioxidant activity of vegetables. J Food Sci. 2009;74(3):H97–H103.
‹‹79››. Bara?ski M, Srednicka-Tober D, Volakakis N, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112(5):794–811.
‹‹80››. Krol WJ. Removal of trace pesticide residues from produce. Connecticut Agricultural Experiment Station. http://www.ct.gov/caes/cwp/view.asp?a=2815&q=376676. June 28, 2012. Accessed April 16, 2015.
‹‹81››. Krieger RI, Brutsche-Keiper P, Crosby HR, Krieger AD. Reduction of pesticide residues of fruit using water only or Plus Fit Fruit and Vegetable Wash. Bull Environ Contam Toxicol. 2003; 70(2):213–8.
‹‹82››. Krol WJ, Arsenault TL, Pylypiw HM, Incorvia Mattina MJ. Reduction of pesticide residues on produce by rinsing. J Agric Food Chem. 2000;48(10):4666–70.
‹‹83››. Wang Z, Huang J, Chen J, Li F. Effectiveness of dishwashing liquids in removing chlorothalonil and chlorpyrifos residues from cherry tomatoes. Chemosphere. 2013;92(8):1022–8.
‹‹84››. Zohair A. Behaviour of some organophosphorus and organochlorine pesticides in potatoes during soaking in different solutions. Food Chem Toxicol. 2001;39(7):751–5.
‹‹85››. Zhang ZY, Liu XJ, Hong XY. Effects of home preparation on pesticide residues in cabbage. Food Control. 2007;18(12):1484–7.
‹‹86››. Zohair A. Behaviour of some organophosphorus and organochlorine pesticides in potatoes during soaking in different solutions. Food Chem Toxicol. 2001;39(7):751–5.
‹‹87››. U.S. Department of Agriculture. Organic Agriculture. http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=organic-agriculture.html. Modified January 9, 2015. Accessed March 30, 2015.
‹‹88››. Monette M. The science of pesticide-free potato chips. CMAJ. 2012;184(14):E741–2.
‹‹89››. Smith-Spangler C, Brandeau ML, Hunter GE, et al. Are organic foods safer or healthier than conventional alternatives?: a systematic review. Ann Intern Med. 2012;157(5):348–66.
‹‹90››. Bara?ski M, Srednicka-Tober D, Volakakis N, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112(5):794–811.
‹‹91››. Forman J, Silverstein J. Organic foods: health and environmental advantages and disadvantages. Pediatrics. 2012;130(5):e1406–15.
‹‹92››. Bara?ski M, Srednicka-Tober D, Volakakis N, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112(5):794–811.
‹‹93››. Lind?n A, Andersson K, Oskarsson A. Cadmium in organic and conventional pig production. Arch Environ Contam Toxicol. 2001;40(3):425–31.
‹‹94››. Lee WCJ, Shimizu M, Kniffin KM, Wansink B. You taste what you see: do organic labels bias taste perceptions? Food Qual Prefer. 2013;29(1):33–9.
‹‹95››. Williams PR, Hammitt JK. Perceived risks of conventional and organic produce: pesticides, pathogens, and natural toxins. Risk Anal. 2001;21(2):319–30.
‹‹96››. Hammitt JK. Risk perceptions and food choice: an exploratory analysis of organic-versus conventional-produce buyers. Risk Anal. 1990;10(3):367–74.
‹‹97››. Reiss R, Johnston J, Tucker K, Desesso JM, Keen CL. Estimation of cancer risks and benefits associated with a potential increased consumption of fruits and vegetables. Food Chem Toxicol. 2012;50(12):4421–7.
‹‹98››. Winter CK. Pesticide residues in imported, organic, and «suspect» fruits and vegetables. J Agric Food Chem. 2012;60(18):4425–9.