11. Как не умереть от рака груди

‹‹1››. American Cancer Society. Breast Cancer Facts & Figures 2013–2014. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-042725.pdf. 2013. Accessed March 10, 2015.

‹‹2››. Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of longterm follow-up. Cancer. 2005;103(12):2481–4.

‹‹3››. Nielsen M, Thomsen JL, Primdahl S, Dyreborg U, Andersen JA. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer. 1987;56(6): 814–9.

‹‹4››. Soto AM, Brisken C, Schaeberle C, Sonnenschein C. Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia. 2013;18(2):199–208.

‹‹5››. Del Monte U. Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle. 2009;8(3):505–6.

‹‹6››. Black WC, Welch HG. Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med. 1993;328(17):1237–43.

‹‹7››. Friberg S, Mattson S. On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol. 1997;65(4):284–97.

‹‹8››. Philippe E, Le Gal Y. Growth of seventy-eight recurrent mammary cancers. Quantitative study. Cancer. 1968;21(3):461–7.

‹‹9››. Kuroishi T, Tominaga S, Morimoto T, et al. Tumor growth rate and prognosis of breast cancer mainly detected by mass screening. Jpn J Cancer Res. 1990;81(5):454–62.

‹‹10››. American Association for Cancer Research. Studies weigh cost, Effectiveness of mammography. Cancer Discov. 2014;4(5):OF5.

‹‹11››. Nielsen M, Thomsen JL, Primdahl S, Dyreborg U, Andersen JA. Breast cancer and atypia among young and middle-aged women: a study of 110 medicolegal autopsies. Br J Cancer. 1987;56(6): 814–9.

‹‹12››. American Institute for Cancer Research. Recommendations for Cancer Prevention. http://www.aicr. org/reduce-your-cancer-risk/recommendations-for-cancer-prevention/. September 12, 2014. Accessed March 10, 2015.

‹‹13››. American Institute for Cancer Research. AICR, the China Study, and Forks Over Knives. http://www. aicr.org/about/advocacy/the-china-study.html. January 9, 2015. Accessed March 10, 2015.

‹‹14››. Hastert TA, Beresford SAA, Patterson RE, Kristal AR, White E. Adherence to WCRF/AICR cancer prevention recommendations and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(9):1498–508.

‹‹15››. Barnard RJ, Gonzalez JH, Liva ME, Ngo TH. Effects of a low-fat, high-fiber diet and exercise program on breast cancer risk factors in vivo and tumor cell growth and apoptosis in vitro. Nutr Cancer. 2006;55(1):28–34.

‹‹16››. Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35.

‹‹17››. Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8.

‹‹18››. IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol 96, Alcohol Consumption and Ethyl Carbamate. Lyon, France: International Agency for Research on Cancer; 2010.

‹‹19››. Stewart BW, Wild CP, eds. World Cancer Report 2014. Lyon, France: International Agency for Research on Cancer; 2014.

‹‹20››. Bagnardi V, Rota M, Botteri E, et al. Light alcohol drinking and cancer: a meta-analysis. Ann Oncol. 2013;24(2):301–8.

‹‹21››. Linderborg K, Salaspuro M, V?kev?inen S. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity. Food Chem Toxicol. 2011;49(9):2103–6.

‹‹22››. Lachenmeier DW, Gumbel-Mako S, Sohnius EM, Keck-Wilhelm A, Kratz E, Mildau G. Salivary acetaldehyde increase due to alcohol-containing mouthwash use: a risk factor for oral cancer. Int J Cancer. 2009;125(3):730–5.

‹‹23››. Chen WY, Rosner B, Hankinson SE, Colditz GA, Willett WC. Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA. 2011;306(17): 1884–90.

‹‹24››. Shufelt C, Merz CN, Yang Y, et al. Red versus white wine as a nutritional aromatase inhibitor in premenopausal women: a pilot study. J Womens Health (Larchmt). 2012;21(3):281–4.

‹‹25››. Eng ET, Williams D, Mandava U, Kirma N, Tekmal RR, Chen S. Anti-aromatase chemicals in red wine. Ann N Y Acad Sci. 2002;963:239–46.

‹‹26››. Shufelt C, Merz CN, Yang Y, et al. Red versus white wine as a nutritional aromatase inhibitor in premenopausal women: a pilot study. J Womens Health (Larchmt). 2012;21(3):281–4.

‹‹27››. Chen S, Sun XZ, Kao YC, Kwon A, Zhou D, Eng E. Suppression of breast cancer cell growth with grape juice. Pharmaceutical Biology. 1998;36(Suppl 1):53–61.

‹‹28››. Chen S, Sun XZ, Kao YC, Kwon A, Zhou D, Eng E. Suppression of breast cancer cell growth with grape juice. Pharmaceutical Biology. 1998;36(Suppl 1):53–61.

‹‹29››. Adams LS, Zhang Y, Seeram NP, Heber D, Chen S. Pomegranate ellagitannin-derived compounds exhibit anti-proliferative and anti-aromatase activity in breast cancer cells in vitro. Cancer Prev Res (Phila). 2010;3(1):108–13.

‹‹30››. Chen S, Oh SR, Phung S, et al. Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Res. 2006;66(24):12026–34.

‹‹31››. Mishal AA. Effects of different dress styles on vitamin D levels in healthy young Jordanian women. Osteoporos Int. 2001;12(11):931–5.

‹‹32››. Cardinali DP, P?vet P. Basic aspects of melatonin action. Sleep Med Rev. 1998;2(3):175–90.

‹‹33››. Blask DE, Dauchy RT, Sauer LA. Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine. 2005;27(2):179–88.

‹‹34››. Flynn-Evans EE, Stevens RG, Tabandeh H, Schernhammer ES, Lockley SW. Total visual blindness is protective against breast cancer. Cancer Causes Control. 2009;20(9):1753–6.

‹‹35››. He C, Anand ST, Ebell MH, Vena JE, Robb SW. Circadian disrupting exposures and breast cancer risk: a meta-analysis. Int Arch Occup Environ Health. 2015 Jul;88(5):533–47.

‹‹36››. Hurley S, Goldberg D, Nelson D, et al. Light at night and breast cancer risk among California teachers. Epidemiology. 2014;25(5):697–706.

‹‹37››. Bauer SE, Wagner SE, Burch J, Bayakly R, Vena JE. A case-referent study: light at night and breast cancer risk in Georgia. Int J Health Geogr. 2013;12:23.

‹‹38››. Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int. 2008;25(1):65–81.

‹‹39››. Li Q, Zheng T, Holford TR, Boyle P, Zhang Y, Dai M. Light at night and breast cancer risk: results from a population-based case-control study in Connecticut, USA. Cancer Causes Control. 2010;21(12):2281–5.

‹‹40››. Basler M, Jetter A, Fink D, Seifert B, Kullak-Ublick GA, Trojan A. Urinary excretion of melatonin and association with breast cancer: meta-analysis and review of the literature. Breast Care (Basel). 2014;9(3):182–7.

‹‹41››. Nagata C, Nagao Y, Shibuya C, Kashiki Y, Shimizu H. Association of vegetable intake with urinary 6-sulfatoxymelatonin level. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1333–5.

‹‹42››. Schernhammer ES, Feskanich D, Niu C, Dopfel R, Holmes MD, Hankinson SE. Dietary correlates of urinary 6-sulfatoxymelatonin concentrations in the Nurses’ Health Study cohorts. Am J Clin Nutr. 2009;90(4):975–85.

‹‹43››. Goncalves AK, Dantas Florencio GL, Maisonnette de Atayde Silva MJ, Cobucci RN, Giraldo PC, Cote NM. Effects of physical activity on breast cancer prevention: a systematic review. J Phys Act Health. 2014;11(2):445–54.

‹‹44››. Friedenreich CM, Woolcott CG, McTiernan A, et al. Alberta physical activity and breast cancer prevention trial: sex hormone changes in a year-long exercise intervention among postmenopausal women. J Clin Oncol. 2010;28(9):1458–66.

‹‹45››. Kossman DA, Williams NI, Domchek SM, Kurzer MS, Stopfer JE, Schmitz KH. Exercise lowers estrogen and progesterone levels in premenopausal women at high risk of breast cancer. J Appl Physiol. 2011;111(6):1687–93.

‹‹46››. Thune I, Furberg AS. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc. 2001;33(6 Suppl):S530–50.

‹‹47››. Carpenter CL, Ross RK, Paganini-Hill A, Bernstein L. Lifetime exercise activity and breast cancer risk among post-menopausal women. Br J Cancer. 1999;80(11):1852–8.

‹‹48››. Peters TM, Moore SC, Gierach GL, et al. Intensity and timing of physical activity in relation to postmenopausal breast cancer risk: the prospective NIH-AARP diet and health study. BMC Cancer. 2009;9:349.

‹‹49››. Friedenreich CM, Cust AE. Physical activity and breast cancer risk: impact of timing, type and dose of activity and population subgroup Effects. Br J Sports Med. 2008;42(8):636–47.

‹‹50››. Hildebrand JS, Gapstur SM, Campbell PT, Gaudet MM, Patel AV. Recreational physical activity and leisure-time sitting in relation to postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1906–12.

‹‹51››. Widmark, EMP. Presence of cancer-producing substances in roasted food. Nature. 1939;143:984.

‹‹52››. National Cancer Institute. Chemicals in Meat Cooked at High Temperatures and Cancer Risk. http://www.cancer.gov/cancertopics/factsheet/Risk/cooked-meats. Reviewed October 15, 2010. Accessed March 10, 2015.

‹‹53››. Shaughnessy DT, Gangarosa LM, Schliebe B, et al. Inhibition of fried meat-induced colorectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt. PLoS ONE. 2011;6(4):e18707.

‹‹54››. Zaidi R, Kumar S, Rawat PR. Rapid detection and quantification of dietary mutagens in food using mass spectrometry and ultra performance liquid chromatography. Food Chem. 2012; 135(4):2897–903.

‹‹55››. Thiebaud HP, Knize MG, Kuzmicky PA, Hsieh DP, Felton JS. Airborne mutagens produced by frying beef, pork and a soy-based food. Food Chem Toxicol. 1995;33(10):821–8.

‹‹56››. Zheng W, Lee SA. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutr Cancer. 2009;61(4):437–46.

‹‹57››. Goldfinger SE. By the way, doctor. In your May issue you say that eating medium or well-done beef increases one’s risk for stomach cancer. But what about the dangers of eating rare beef?. Harv Health Lett. 1999;24(5):7.

‹‹58››. Frandsen H, Frederiksen H, Alexander J. 2-Amino-1-methyl-6-(5-hydroxy-)phenylimidazo[4,5-b] pyridine (5-OH-PhIP), a biomarker for the genotoxic dose of the heterocyclic amine, 2-amino-1-methyl- 6-phenylimidazo[4,5-b]pyridine (PhIP). Food Chem Toxicol. 2002;40(8): 1125–30.

‹‹59››. Frandsen H. Biomonitoring of urinary metabolites of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) following human consumption of cooked chicken. Food Chem Toxicol. 2008; 46(9):3200–5.

‹‹60››. Steck SE, Gaudet MM, Eng SM, et al. Cooked meat and risk of breast cancer— lifetime versus recent dietary intake. Epidemiology. 2007;18(3):373–82.

‹‹61››. Zheng W, Gustafson DR, Sinha R, et al. Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst. 1998;90(22):1724–9.

‹‹62››. Rohrmann S, Lukas Jung SU, Linseisen J, Pfau W. Dietary intake of meat and meat-derived heterocyclic aromatic amines and their correlation with DNA adducts in female breast tissue. Mutagenesis. 2009;24(2):127–32.

‹‹63››. Santella RM, Gammon M, Terry M, et al. DNA adducts, DNA repair genotype/phenotype and cancer risk. Mutat Res. 2005;592(1–2):29–35.

‹‹64››. Lauber SN, Ali S, Gooderham NJ. The cooked food derived carcinogen 2-amino-1-methyl-6- phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis. 2004;25(12):2509–17.

‹‹65››. Debruin LS, Martos PA, Josephy PD. Detection of PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine) in the milk of healthy women. Chem Res Toxicol. 2001;14(11):1523–8.

‹‹66››. Lauber SN, Ali S, Gooderham NJ. The cooked food derived carcinogen 2-amino-1-methyl-6- phenylimidazo[4,5-b] pyridine is a potent oestrogen: a mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis. 2004;25(12):2509–17.

‹‹67››. Debruin LS, Martos PA, Josephy PD. Detection of PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine) in the milk of healthy women. Chem Res Toxicol. 2001;14(11):1523–8.

‹‹68››. Bessette EE, Yasa I, Dunbar D, Wilkens LR, Le Marchand L, Turesky RJ. Biomonitoring of carcinogenic heterocyclic aromatic amines in hair: a validation study. Chem Res Toxicol. 2009; 22(8): 1454–63.

‹‹69››. Grose KR, Grant JL, Bjeldanes LF, et al. Isolation of the carcinogen IQ from fried egg patties. J Agric Food Chem. 1986;34(2):201–2.

‹‹70››. Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18(3):579–90.

‹‹71››. Magagnotti C, Orsi F, Bagnati R, et al. Effect of diet on serum albumin and hemoglobin adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Int J Cancer. 2000; 88(1): 1–6.

‹‹72››. Lauber SN, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells. Toxicology. 2011;279(1–3):139–45.

‹‹73››. Lauber SN, Gooderham NJ. The cooked meat-derived mammary carcinogen 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine promotes invasive behaviour of breast cancer cells. Toxicology. 2011;279(1–3):139–45.

‹‹74››. Vergnaud AC, Romaguera D, Peeters PH, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Eu rope: results from the European Prospective Investigation into Nutrition and Cancer cohort study. Am J Clin Nutr. 2013;97(5):1107–20.

‹‹75››. Danilo C, Frank PG. Cholesterol and breast cancer development. Current Opinion in Pharmacology. 2012;12(6):677.

‹‹76››. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994 5(2):105–13.

‹‹77››. Rudling MJ, Stahle L, Peterson CO, Skoog L. Content of low density lipoprotein receptors in breast cancer tissue related to survival of patients. Br Med J (Clin Res Ed). 1986;292(6520): 580–2.

‹‹78››. Danilo C, Frank PG. Cholesterol and breast cancer development. Current Opinion in Pharmacology. 2012;12(6):677–82.

‹‹79››. Antalis CJ, Arnold T, Rasool T, Lee B, Buhman KK, Siddiqui RA. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res Treat. 2010;122(3):661–70.

‹‹80››. Firestone RA. Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells. Bioconjug Chem. 1994;5(2):105–13.

‹‹81››. Kitahara CM, Berrington de Gonzalez A, Freedman ND, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29(12):1592–8.

‹‹82››. Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135(1):261–9.

‹‹83››. McDougall JA, Malone KE, Daling JR, Cushing-Haugen KL, Porter PL, Li CI. Long-term statin use and risk of ductal and lobular breast cancer among women 55 to 74 years of age. Cancer Epidemiol Biomarkers Prev. 2013;22(9):1529–37.

‹‹84››. Centers for Disease Control and Prevention. Data table for Figure 17. Statin drug use in the past 30 days among adults 45 years of age and over, by sex and age: United States, 1988–1994, 1999–2002, and 2005–2008. National Health and Nutrition Examination Survey. Chartbook: Centers for Disease Control; 2010. http://www.cdc.gov/nchs/data/hus/2010/fig17.pdf. Accessed March 25, 2015.

‹‹85››. Maunsell E, Drolet M, Brisson J, Robert J, Deschell L. Dietary change after breast cancer: extent, predictors, and relation with psychological distress. J Clin Oncol. 2002;20(4): 1017–25.

‹‹86››. Pierce JP, Stefanick ML, Flatt SW, et al. Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol. 2007;25(17): 2345–51.

‹‹87››. Li Q, Holford TR, Zhang Y, et al. Dietary fiber intake and risk of breast cancer by menopausal and estrogen receptor status. Eur J Nutr. 2013;52(1):217–23.

‹‹88››. Li Q, Holford TR, Zhang Y, et al. Dietary fiber intake and risk of breast cancer by menopausal and estrogen receptor status. Eur J Nutr. 2013;52(1):217–23.

‹‹89››. Howe GR, Hirohata T, Hislop TG, et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst. 1990;82(7):561–9.

‹‹90››. Dong J-Y, He K, Wang P, Qin LQ. Dietary fiber intake and risk of breast cancer: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2011;94(3):900–5.

‹‹91››. Aune D, Chan DS, Greenwood DC, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23(6):1394–402.

‹‹92››. Clemens R, Kranz S, Mobley AR, et al. Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J Nutr. 2012;142(7): 1390S–401S.

‹‹93››. Farmer B, Larson BT, Fulgoni VL, Rainville AJ, Liepa GU. A vegetarian dietary pattern as a nutrient- dense approach to weight management: an analysis of the National Health and Nutrition Examination Survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27.

‹‹94››. Rizzo NS, Jaceldo-Siegl K, Sabate J, Fraser GE. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J Acad Nutr Diet. 2013;113(12):1610–9.

‹‹95››. Dewell A, Weidner G, Sumner MD, Chi CS, Ornish D. A very-low-fat vegan diet increases intake of protective dietary factors and decreases intake of pathogenic dietary factors. J Am Diet Assoc. 2008;108(2):347–56.

‹‹96››. Gallus S, Talamini R, Giacosa A, et al. Does an apple a day keep the oncologist away? Ann Oncol. 2005;16(11):1841–4.

‹‹97››. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem. 2003;51(3): 609–14.

‹‹98››. Sun J, Liu RH. Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen- independent human breast cancer cells through cell cycle modulation. J Agric Food Chem. 2008;56(24):11661–7.

‹‹99››. Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J Agric Food Chem. 2003;51(3): 609–14.

‹‹100››. Reagan-Shaw S, Eggert D, Mukhtar H, Ahmad N. Antiproliferative effects of apple peel extract against cancer cells. Nutr Cancer. 2010;62(4):517–24.

‹‹101››. Steck SE, Gaudet MM, Eng SM, et al. Cooked meat and risk of breast cancer— lifetime versus recent dietary intake. Epidemiology. 2007;18(3):373–82.

‹‹102››. Murray S, Lake BG, Gray S, et al. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001;22(9):1413–20.

‹‹103››. Murray S, Lake BG, Gray S, et al. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001;22(9):1413–20.

‹‹104››. Murray S, Lake BG, Gray S, et al. Effect of cruciferous vegetable consumption on heterocyclic aromatic amine metabolism in man. Carcinogenesis. 2001;22(9):1413–20.

‹‹105››. Thi?baud HP, Knize MG, Kuzmicky PA, Hsieh DP, Felton JS. Airborne mutagens produced by frying beef, pork and a soy-based food. Food Chem Toxicol. 1995;33(10):821–8.

‹‹106››. Boggs DA, Palmer JR, Wise LA, et al. Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am J Epidemiol. 2010;172(11):1268–79.

‹‹107››. Boggs DA, Palmer JR, Wise LA, et al. Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am J Epidemiol. 2010;172(11):1268–79.

‹‹108››. Tiede B, Kang Y. From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Res. 2011;21(2):245–57.

‹‹109››. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

‹‹110››. Karrison TG, Ferguson DJ, Meier P. Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst. 1999;91(1):80–5.

‹‹111››. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7(11):834–46.

‹‹112››. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.

‹‹113››. Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 2010;16(9):2580–90.

‹‹114››. Cornblatt BS, Ye L, Dinkova-Kostova AT, et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis. 2007;28(7):1485–90.

‹‹115››. Fahey JW, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA. 1997;94(19): 10367–72.

‹‹116››. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol. 2014;51(9):1633–53.

‹‹117››. Smeds AI, Eklund PC, Sjoholm RE, et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem. 2007;55(4):1337–46.

‹‹118››. Rosolowich V, Saettler E, Szuck B, et al. Mastalgia. J Obstet Gynaecol Can. 2006;170:49–57.

‹‹119››. Phipps WR, Martini MC, Lampe JW, Slavin JL, Kurzer MS. Effect of flaxseed ingestion on the menstrual cycle. J Clin Endocrinol Metab. 1993;77(5):1215–9.

‹‹120››. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15(1):36–47.

‹‹121››. Knekt P, Adlercreutz H, Rissanen H, Aromaa A, Teppo L, Heli?vaara M. Does antibacterial treatment for urinary tract infection contribute to the risk of breast cancer? Br J Cancer. 2000;82(5):1107–10.

‹‹122››. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr. 2010;92(1):141–53.

‹‹123››. Abarzua S, Serikawa T, Szewczyk M, Richter DU, Piechulla B, Briese V. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20. Arch Gynecol Obstet. 2012;285(4):1145–51.

‹‹124››. Fabian CJ, Kimler BF, Zalles CM, et al. Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside. Cancer Prev Res (Phila). 2010;3(10): 1342–50.

‹‹125››. Buck K, Vrieling A, Zaineddin AK, et al. Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol. 2011;29(28):3730–8.

‹‹126››. Guglielmini P, Rubagotti A, Boccardo F. Serum enterolactone levels and mortality outcome in women with early breast cancer: a retrospective cohort study. Breast Cancer Res Treat. 2012; 132(2):661–8.

‹‹127››. McCann SE, Thompson LU, Nie J, et al. Dietary lignan intakes in relation to survival among women with breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat. 2010;122(1):229–35.

‹‹128››. ?berg UW, Saarinen N, Abrahamsson A, Nurmi T, Engblom S, Dabrosin C. Tamoxifen and flaxseed alter angiogenesis regulators in normal human breast tissue in vivo. PLoS ONE. 2011;6(9):e25720.

‹‹129››. Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE. Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res. 2005;11(10):3828–35.

‹‹130››. Mueller SO, Simon S, Chae K, Metzler M, Korach KS. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci. 2004;80(1):14–25.

‹‹131››. Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008;74(13):1656–65.

‹‹132››. Oseni T, Patel R, Pyle J, Jordan VC. Selective estrogen receptor modulators and phytoestrogens. Planta Med. 2008;74(13):1656–65.

‹‹133››. Nagata C, Mizoue T, Tanaka K, et al. Soy intake and breast cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 2014;44(3):282–95.

‹‹134››. Chen MN, Lin CC, Liu CF. Efficacy of phytoestrogens for menopausal symptoms: a metaanalysis and systematic review. Climacteric. 2015;18(2):260–9.

‹‹135››. Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4):2407–12.

‹‹136››. Bhagwat S, Haytowitz DB, Holden JM. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0. http://www.ars.usda.gov/SP2UserFiles/Place/12354500/Data/isoflav/Isoflav_R2.pdf. September2008. Accessed March 26, 2015.

‹‹137››. Nechuta SJ, Caan BJ, Chen WY, et al. Soy food intake after diagnosis of breast cancer and survival: an in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am J Clin Nutr. 2012;96(1):123–32.

‹‹138››. Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev. 2013;14(4): 2407–12.

‹‹139››. Kang HB, Zhang YF, Yang JD, Lu KL. Study on soy isoflavone consumption and risk of breast cancer and survival. Asian Pac J Cancer Prev. 2012;13(3):995–8.

‹‹140››. Bosviel R, Dumollard E, Dechelotte P, Bignon YJ, Bernard-Gallon D. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS. 2012;16(5):235–44.

‹‹141››. National Breast Cancer Coalition. National Breast Cancer Coalition survey reveals that heightened breast cancer awareness has insufficient impact on knowledge. http://www.prnewswire.com/news-releases/ national-breast-cancer-coalition-survey-reveals-thatheightened-breast-cancer-awareness-has-insuffi cient- impact-on-knowledge-58248962.html. October 1, 2007. Accessed March 23, 2015.

‹‹142››. Colditz GA, Willett WC, Hunter DJ, et al. Family history, age, and risk of breast cancer. Prospective data from the Nurses’ Health Study. JAMA. 1993;270(3):338–43.

‹‹143››. Bal A, Verma S, Joshi K, et al. BRCA1-methylated sporadic breast cancers are BRCA-like in showing a basal phenotype and absence of ER expression. Virchows Arch. 2012;461(3): 305–12.

‹‹144››. Bosviel R, Dumollard E, D?chelotte P, Bignon YJ, Bernard-Gallon D. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS. 2012;16(5):235–44.

‹‹145››. Magee PJ, Rowland I. Soy products in the management of breast cancer. Curr Opin Clin Nutr Metab Care. 2012;15(6):586–91.

‹‹146››. Parkin DM, Fern?ndez LM. Use of statistics to assess the global burden of breast cancer. Breast J. 2006;12 Suppl 1:S70–80.

‹‹147››. Wu AH, Butler LM. Green tea and breast cancer. Mol Nutr Food Res. 2011;55(6):921–30.

‹‹148››. Korde LA, Wu AH, Fears T, et al. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1050–9.

‹‹149››. Wakchaure GC. Chapter 3: Production and marketing of mushrooms: Global and national scenario. In: Mushrooms: Singh N, Cijay B, Kamal S, Wakchaure GC, eds. Cultivation, Marketing and Consumption. Himachal Pradesh-173213, India: Directorate of Mushroom Research; 2014:15–22.

‹‹150››. Zhang M, Huang J, Xie X, Holman CD. Dietary intakes of mushrooms and green tea combine to reduce the risk of breast cancer in Chinese women. Int J Cancer. 2009;124(6):1404–8.

‹‹151››. Ganz PA. A teachable moment for oncologists: cancer survivors, 10 million strong and growing! J Clin Oncol. 2005;23(24):5458–60.

‹‹152››. Ganz PA. A teachable moment for oncologists: cancer survivors, 10 million strong and growing! J Clin Oncol. 2005;23(24):5458–60.

Похожие книги из библиотеки