6. Как не умереть от диабета

‹‹1››. Matthews DR, Matthews PC. Banting Memorial Lecture 2010. Type 2 diabetes as an ‘infectious’ disease: is this the Black Death of the 21st century? Diabet Med. 2011;28(1):2–9.

‹‹2››. Centers for Disease Control and Prevention. Number (in millions) of civilian, noninstitutionalized persons with diagnosed diabetes, United States, 1980–2011. http://www.cdc.gov/diabetes/statistics/prev/national/ figpersons.htm. March 28, 2013. Accessed May 3, 2015.

‹‹3››. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.

‹‹4››. Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta, GA: U.S. Department of Health and Human Services; 2014.

‹‹5››. Centers for Disease Control and Prevention. Deaths: final data for 2013 table 10. Number of deaths from 113 selected causes. National Vital Statistics Report 2016;64(2).

‹‹6››. 2014 Statistics Report. Centers for Disease Control and Prevention. http://www.cdc.gov/diabetes/data/ statistics/2014StatisticsReport.html. Updated October 24, 2014. Accessed March 3, 2015.

‹‹7››. Lempainen J, Tauriainen S, Vaarala O, et al. Interaction of enterovirus infection and cow’s milkbased formula nutrition in type 1 diabetes-associated autoimmunity. Diabetes Metab Res Rev. 2012;28(2):177–85.

‹‹8››. 2014 Statistics Report. Centers for Disease Control and Prevention. http://www.cdc.gov/diabetes/data/ statistics/2014StatisticsReport.html. Updated October 24, 2014. Accessed March 3, 2015.

‹‹9››. Rachek LI. Free fatty acids and skeletal muscle insulin resistance. Prog Mol Biol Transl Sci. 2014;121:267–92.

‹‹10››. 2014 Statistics Report. Centers for Disease Control and Prevention. http://www.cdc.gov/diabetes/data/ statistics/2014StatisticsReport.html. Updated October 24, 2014. Accessed March 3, 2015.

‹‹11››. Sweeney JS. Dietary factors that influence the dextrose tolerance test. Arch Intern Med. 1927; 40(6):818–30.

‹‹12››. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97(12):2859–65.

‹‹13››. Roden M, Krssak M, Stingl H, et al. Rapid impairment of skeletal muscle glucose transport/ phosphorylation by free fatty acids in humans. Diabetes. 1999;48(2):358–64.

‹‹14››. Santomauro AT, Boden G, Silva ME, et al. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes. 1999;48(9):1836–41.

‹‹15››. Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia. 1999;42(1): 113–6.

‹‹16››. Lee S, Boesch C, Kuk JL, Arslanian S. Effects of an overnight intravenous lipid infusion on intramyocellular lipid content and insulin sensitivity in African-American versus Caucasian adolescents. Metab Clin Exp. 2013;62(3):417–23.

‹‹17››. Roden M, Krssak M, Stingl H, et al. Rapid impairment of skeletal muscle glucose transport/ phosphorylation by free fatty acids in humans. Diabetes. 1999;48(2):358–64.

‹‹18››. Himsworth HP. Dietetic factors influencing the glucose tolerance and the activity of insulin. J Physiol (Lond). 1934;81(1):29–48.

‹‹19››. Tab?k AG1, Herder C, Rathmann W, Brunner EJ, Kivim?ki M. Prediabetes: a high-risk state for diabetes. Lancet. 2012;379(9833):2279–90.

‹‹20››. Pratley RE. The early treatment of type 2 diabetes. Am J Med. 2013;126(9 Suppl 1):S2–9.

‹‹21››. Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013; 4(6):270–81.

‹‹22››. Pihoker C, Scott CR, Lensing SY, Cradock MM, Smith J. Non-insulin dependent diabetes mellitus in African-American youths of Arkansas. Clin Pediatr (Phila). 1998;37(2):97–102.

‹‹23››. Dean H, Flett B. Natural history of type 2 diabetes diagnosed in childhood: long term follow-up in young adult years. Diabetes. 2002;51(s1):A24.

‹‹24››. Hannon TS, Rao G, Arslanian SA. Childhood obesity and type 2 diabetes mellitus. Pediatrics. 2005;116(2):473–80.

‹‹25››. Rocchini AP. Childhood obesity and a diabetes epidemic. N Engl J Med. 2002;346(11):854–5.

‹‹26››. Lifshitz F. Obesity in children. J Clin Res Pediatr Endocrinol. 2008;1(2):53–60.

‹‹27››. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350–5.

‹‹28››. Sabat? J, Wien M. Vegetarian diets and childhood obesity prevention. Am J Clin Nutr. 2010; 91(5):1525S–1529S.

‹‹29››. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32(5):791–6.

‹‹30››. Sabat? J, Lindsted KD, Harris RD, Sanchez A. Attained height of lacto-ovo vegetarian children and adolescents. Eur J Clin Nutr. 1991;45(1):51–8.

‹‹31››. Sabat? J, Wien M. Vegetarian diets and childhood obesity prevention. Am J Clin Nutr. 2010; 91(5):1525S–1529S.

‹‹32››. Cali AM, Caprio S. Prediabetes and type 2 diabetes in youth: an emerging epidemic disease? Curr Opin Endocrinol Diabetes Obes. 2008;15(2):123–7.

‹‹33››. Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol. 2012;771:42–50.

‹‹34››. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

‹‹35››. Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci. 2004;19:92–6.

‹‹36››. Fraser GE. Vegetarian diets: what do we know of their effects on common chronic diseases? Am J Clin Nutr. 2009;89(5):1607S–1612S.

‹‹37››. Tonstad S, Stewart K, Oda K, Batech M, Herring RP, Fraser GE. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis. 2013;23(4):292–9.

‹‹38››. Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol. 2009;24(5):703–6.

‹‹39››. Evans WJ. Oxygen-carrying proteins in meat and risk of diabetes mellitus. JAMA Intern Med. 2013;173(14):1335–6.

‹‹40››. Egnatchik RA, Leamy AK, Jacobson DA, Shiota M, Young JD. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab. 2014;3(5):544–53.

‹‹41››. Estadella D, da Penha Oller do Nascimento CM, Oyama LM, Ribeiro EB, Damaso AR, de Piano A. Lipotoxicity: Effects of dietary saturated and transfatty acids. Mediators Inflamm. 2013; 2013:137579.

‹‹42››. Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600–6.

‹‹43››. Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol. 2009;24(5):703–6.

‹‹44››. Goff LM, Bell JD, So PW, Dornhorst A, Frost GS. Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr. 2005;59(2):291–8.

‹‹45››. Gojda J, Patkov? J, Ja?ek M, et al. Higher insulin sensitivity in vegans is not associated with higher mitochondrial density. Eur J Clin Nutr. 2013;67(12):1310–5.

‹‹46››. Goff LM, Bell JD, So PW, Dornhorst A, Frost GS. Veganism and its relationship with insulin resistance and intramyocellular lipid. Eur J Clin Nutr. 2005;59(2):291–8.

‹‹47››. Papanikolaou Y, Fulgoni VL. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the National Health and Nutrition Examination Survey 1999–2002. J Am Coll Nutr. 2008;27(5):569–76.

‹‹48››. Mollard RC, Luhovyy BL, Panahi S, Nunez M, Hanley A, Anderson GH. Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults. Br J Nutr. 2012;108 Suppl 1:S111–22.

‹‹49››. Cnop M, Hughes SJ, Igoillo-Esteve M, et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia. 2010; 53(2):321–30.

‹‹50››. Taylor R. Banting Memorial lecture 2012: reversing the twin cycles of type 2 diabetes. Diabet Med. 2013;30(3):267–75.

‹‹51››. Cunha DA, Igoillo-Esteve M, Gurzov EN, et al. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human ?-cell apoptosis. Diabetes. 2012;61(11):2763–75.

‹‹52››. Cnop M, Hannaert JC, Grupping AY, Pipeleers DG. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modifi cation. Endocrinology. 2002; 143(9): 3449–53.

‹‹53››. Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52(3):726–33.

‹‹54››. Xiao C, Giacca A, Carpentier A, Lewis GF. Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia. 2006;49(6):1371–9.

‹‹55››. Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78(1):91–8.

‹‹56››. Cunha DA, Igoillo-Esteve M, Gurzov EN, et al. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human ?-cell apoptosis. Diabetes. 2012;61(11):2763–75.

‹‹57››. Welch RW. Satiety: have we neglected dietary non-nutrients? Proc Nutr Soc. 2011;70(2): 145–54.

‹‹58››. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care. 2006;29(8):1777–83.

‹‹59››. Trapp CB, Barnard ND. Usefulness of vegetarian and vegan diets for treating type 2 diabetes. Curr Diab Rep. 2010;10(2):152–8.

‹‹60››. Pratley RE. The early treatment of type 2 diabetes. Am J Med. 2013;126(9 Suppl 1):S2–9.

‹‹61››. Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Type 2 diabetes as a «coronary heart disease equivalent»: an 18-year prospective population-based study in Finnish subjects. Diabetes Care. 2005;28(12):2901–7.

‹‹62››. Kahleova H, Matoulek M, Malinska H, et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with type 2 diabetes. Diabet Med. 2011;28(5):549–59.

‹‹63››. Ornish D. Statins and the soul of medicine. Am J Cardiol. 2002;89(11):1286–90.

‹‹64››. Kahleova H, Hrachovinova T, Hill M, et al. Vegetarian diet in type 2 diabetes— improvement in quality of life, mood and eating behaviour. Diabet Med. 2013;30(1):127–9.

‹‹65››. Chiu THT, Huang HY, Chiu YF, et al. Taiwanese vegetarians and omnivores: dietary composition, prevalence of diabetes and IFG. PLoS One. 2014;9(2):e88547.

‹‹66››. Chiu THT, Huang HY, Chiu YF, et al. Taiwanese vegetarians and omnivores: dietary composition, prevalence of diabetes and IFG. PLoS One. 2014;9(2):e88547.

‹‹67››. Magliano DJ, Loh VHY, Harding JL, et al. Persistent organic pollutants and diabetes: a review of the epidemiological evidence. Diabetes Metab. 2014;40(1):1–14.

‹‹68››. Lee DH, Lee IK, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care. 2006;29(7):1638–44.

‹‹69››. Wu H, Bertrand KA, Choi AL, et al. Persistent organic pollutants and type 2 diabetes: a prospective analysis in the Nurses’ Health Study and meta-analysis. Environ Health Perspect. 2013; 121(2):153–61.

‹‹70››. Schecter A, Colacino J, Haffner D, et al. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ Health Perspect. 2010;118(6):796–802.

‹‹71››. Crinnion WJ. The role of persistent organic pollutants in the worldwide epidemic of type 2 diabetes mellitus and the possible connection to farmed Atlantic salmon (Salmo salar). Altern Med Rev. 2011;16(4):301–13.

‹‹72››. Lee DH, Lee IK, Song K, et al. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care. 2006;29(7):1638–44.

‹‹73››. Crinnion WJ. The role of persistent organic pollutants in the worldwide epidemic of type 2 diabetes mellitus and the possible connection to farmed Atlantic salmon (Salmo salar). Altern Med Rev. 2011;16(4):301–13.

‹‹74››. Farmer B, Larson BT, Fulgoni VL III, et al. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the National Health and Nutrition Examination Survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27.

‹‹75››. Farmer B, Larson BT, Fulgoni VL III, et al. A vegetarian dietary pattern as a nutrient-dense approach to weight management: an analysis of the National Health and Nutrition Examination Survey 1999–2004. J Am Diet Assoc. 2011;111(6):819–27.

‹‹76››. Toth MJ, Poehlman ET. Sympathetic nervous system activity and resting metabolic rate in vegetarians. Metabolism. 1994;43(5):621–5.

‹‹77››. Karlic H, Schuster D, Varga F, et al. Vegetarian diet affects genes of oxidative metabolism and collagen synthesis. Ann Nutr Metab. 2008;53(1):29–32.

‹‹78››. Vergnaud AC, Norat T, Romaguera D, et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am J Clin Nutr. 2010;92(2):398–407.

‹‹79››. The Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24): 2545–59.

‹‹80››. The Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24): 2545–59.

‹‹81››. Luan FL, Nguyen K. Intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(14): 1519–20.

‹‹82››. Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging. Am J Pathol. 2012;181(4):1142–6.

‹‹83››. Madonna R, Pandolfi A, Massaro M, et al. Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase. Diabetologia. 2004;47(3):532–6.

‹‹84››. Lingvay I, Guth E, Islam A, et al. Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery? Diabetes Care. 2013;36(9):2741–7.

‹‹85››. Lingvay I, Guth E, Islam A, et al. Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery? Diabetes Care. 2013;36(9):2741–7.

‹‹86››. Taylor R. Type 2 diabetes: etiology and reversibility. Diabetes Care. 2013;36(4):1047–55.

‹‹87››. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506–14.

‹‹88››. Taheri S, Tahrani A, Barnett A. Bariatric surgery: a cure for diabetes? Pract Diabetes Int. 2009; 26:356–8.

‹‹89››. Vergnaud AC, Norat T, Romaguera D, et al. Meat consumption and prospective weight change in participants of the EPIC-PANACEA study. Am J Clin Nutr. 2010;92(2):398–407.

‹‹90››. Gilsing AM, Weijenberg MP, Hughes LA, et al. Longitudinal changes in BMI in older adults are associated with meat consumption differentially, by type of meat consumed. J Nutr. 2012; 142(2):340–9.

‹‹91››. Wang Y, Lehane C, Ghebremeskel K, et al. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr. 2010;13(3): 400–8.

‹‹92››. National Cattlemen’s Beef Association, Young MK, Redson BA. New USDA data show 29 beef cuts now meet government guidelines for lean. http://www.beef.org/udocs/29leancuts.pdf. 2005. Accessed March 6, 2015.

‹‹93››. Steven S, Lim EL, Taylor R. Dietary reversal of type 2 diabetes motivated by research knowledge. Diabet Med. 2010;27(6):724–5.

‹‹94››. Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–9.

‹‹95››. American Diabetes Association. Standards of medical care in diabetes—2015. Diabetes Care. 2015;38(suppl 1):S1–S93.

‹‹96››. Dunaief DM, Fuhrman J, Dunaief JL, et al. Glycemic and cardiovascular parameters improved in type 2 diabetes with the high nutrient density (HND) diet. Open Journal of Preventive Medicine. 2012;2(3):364–71.

‹‹97››. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506–14.

‹‹98››. Steven S, Lim EL, Taylor R. Population response to information on reversibility of Type 2 diabetes. Diabet Med. 2013;30(4):e135–8.

‹‹99››. Dunaief DM, Fuhrman J, Dunaief JL, et al. Glycemic and cardiovascular parameters improved in type 2 diabetes with the high nutrient density (HND) diet. Open J Prev Med. 2012;2(3):364–71.

‹‹100››. Anderson JW, Ward K. High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. Am J Clin Nutr. 1979;32(11):2312–21.

‹‹101››. Anderson JW, Ward K. High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. Am J Clin Nutr. 1979;32(11):2312–21.

‹‹102››. Callaghan BC, Cheng H, Stables CL, et al. Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol. 2012;11(6):521–34.

‹‹103››. Said G. Diabetic neuropathy— a review. Nat Clin Pract Neurol. 2007;3(6):331–40.

‹‹104››. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med. 1994;4(4):431–9.

‹‹105››. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med. 1994;4(4):431–9.

‹‹106››. Rabinowitch IM. Effects of the high carbohydrate-low calorie diet upon carbohydrate tolerance in diabetes mellitus. Can Med Assoc J. 1935;33(2):136–44.

‹‹107››. Newborg B, Kempner W. Analysis of 177 cases of hypertensive vascular disease with papilledema; one hundred twenty-six patients treated with rice diet. Am J Med. 1955;19(1): 33–47.

‹‹108››. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med. 1994;4(4):431–9.

‹‹109››. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med. 1994;4(4):431–9.

‹‹110››. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med. 1994;4(4):431–9.

‹‹111››. Crane MG, Zielinski R, Aloia R. Cis and trans fats in omnivores, lacto-ovo vegetarians and vegans. Am J Clin Nutr. 1988;48:920.

‹‹112››. Tesfaye S, Chaturvedi N, Eaton SEM, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–50.

‹‹113››. Newrick PG, Wilson AJ, Jakubowski J, et al. Sural nerve oxygen tension in diabetes. Br Med J (Clin Res Ed). 1986;293(6554):1053–4.

‹‹114››. McCarty MF. Favorable impact of a vegan diet with exercise on hemorheology: implications for control of diabetic neuropathy. Med Hypotheses. 2002;58(6):476–86.

‹‹115››. Kempner W, Peschel RL, Schlayer C. Effect of rice diet on diabetes mellitus associated with vascular disease. Postgrad Med. 1958;24(4):359–71.

‹‹116››. McCarty MF. Favorable impact of a vegan diet with exercise on hemorheology: implications for control of diabetic neuropathy. Med Hypotheses. 2002;58(6):476–86.

‹‹117››. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69.

‹‹118››. Bigaard J, Tj?nneland A, Thomsen BL, Overvad K, Heitmann BL, S, S?rensen TI. Waist circumference, BMI, smoking, and mortality in middle-aged men and women. Obes Res. 2003; 11(7): 895–903.

‹‹119››. Bigaard J, Tj?nneland A, Thomsen BL, Overvad K, Heitmann BL, S, S?rensen TI. Waist circumference, BMI, smoking, and mortality in middle-aged men and women. Obes Res. 2003; 11(7): 895–903.

‹‹120››. Leitzmann MF, Moore SC, Koster A, et al. Waist circumference as compared with body-mass index in predicting mortality from specific causes. PLoS One. 2011;6(4):e18582.

‹‹121››. Browning LM, Hsieh SD, Ashwell M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0·5 could be a suitable global boundary value. Nutr Res Rev. 2010;23(2):247–69.

‹‹122››. Centers for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States, 2014. Atlanta, GA: U.S. Department of Health and Human Ser vices; 2014. http://www.cdc.gov/diabetes/data/statistics/2014StatisticsReport.html. Updated October 24, 2014. Accessed March 6, 2015.

‹‹123››. Nathan DM, Davidson MB, Defronzo RA, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9.

‹‹124››. Karve A, Hayward RA. Prevalence, diagnosis, and treatment of impaired fasting glucose and impaired glucose tolerance in nondiabetic U.S. adults. Diabetes Care. 2010;33(11):2355–9.

‹‹125››. Cardona-Morrell M, Rychetnik L, Morrell SL, Espinel PT, Bauman A. Reduction of diabetes risk in routine clinical practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis. BMC Public Health. 2010;10:653.

‹‹126››. Holman H. Chronic disease— the need for a new clinical education. JAMA. 2004;292(9):1057–9.

‹‹127››. Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, D.C.: The National Academies Press, 2001:213. http://www.iom.edu/Reports/2001/Crossing- the-Quality-Chasm-A-New-Health-System-for-the-21st-Century.aspx.

Похожие книги из библиотеки