Как хромосомы учатся
Чтобы понять принципы работы нашего генетического мозга и ответить на вопрос, почему он иногда работает совсем не так хорошо, как хотелось бы, давайте поближе присмотримся к хромосомам.
Каждая из ваших сорока шести хромосом — это на самом деле очень длинная молекула ДНК, содержащая до трехсот миллионов пар генетических букв, называемых нуклеиновыми кислотами. В генетическом алфавите — всего «четыре» буквы: A, G, Т и С. Все наши генетические данные закодированы сочетаниями этих четырех букв. Замените одну букву, и вы измените целое сочетание — а вместе с этим и его смысл. Измените смысл — и, вполне возможно, вы измените весь процесс роста организма.
Биологи долго считали, что замена буквы — это единственный способ вызвать изменения в физиологии. Эпигенетика же показала нам, что куда чаще у разных людей физиология развивается по-разному не потому, что у них навсегда меняются буквы в ДНК, а потому, что к двойной спирали ДНК или другому ядерному материалу прикрепляются временные маркеры — эпигенетические метки — и изменяют экспрессию генов. Некоторые из этих маркеров присутствуют уже при рождении, но в течение жизни одни маркеры отсоединяются от ДНК, а другие — присоединяются. Ученым нужно было узнать, что значат эти метки. Дело просто в старении ДНК, или же происходит что-то другое — намного более интересное? Если бы у всех в течение всей жизни метки были одинаковые, это было бы просто признаком старения. Но вот если метки разные, это значит, что разный жизненный опыт приводит к разному функционированию генов. Кроме того, это значит, что в каком-то смысле наши гены умеют учиться.
В 2005 году испанские ученые смогли разгадать эту загадку. Они подготовили хромосомы двух пар идентичных близнецов: одним близнецам было по три года, другим — по пятьдесят. С помощью флуоресцентных зеленых и красных молекул, которые прикрепляются соответственно к эпигенетически модифицированным и ^модифицированным сегментам ДНК, они исследовали два набора генов. Гены детей оказались очень похожими; это показало, что, как и ожидалось, близнецы начинают жизнь с одинаковыми генетическими метками. Напротив, хромосомы пятидесятилетних горели красно-зеленым, словно две совсем по-разному украшенных новогодних елки. За время жизни генетические метки изменились так, что идентичные близнецы с точки зрения генетического функционирования стали совсем не идентичными‹‹24››. Это значит, что генетические метки связаны не только со старением. Это прямой результат того, как мы живем. Другие исследования с тех пор показали, что эпигенетическое маркирование — это реакция на химические вещества в организме, которые формируются в результате того, что мы едим, пьем, вдыхаем, думаем и делаем‹‹25››. Похоже, что наши гены всегда слушают, всегда готовы реагировать и меняться. Сфотографировав разные красно-зеленые узоры на хромосомах двух пятидесятилетних женщин, ученые показали нам два разных «характера», которые развились у их генов.
Различия в генетических метках могут объяснить, почему у близнецов с одинаковой ДНК могут возникать совершенно разные проблемы со здоровьем. Если, скажем, одна из сестер-близнецов курит, пьет и питается одним фастфудом, а другая хорошо ухаживает за своим телом, то два набора ДНК получают совершенно разные химические «уроки»: один получает сбалансированное образование, а другой, образно говоря, вместо школы бегает по грязным улицам химического хаоса.
В каком-то смысле можно сказать, что наш образ жизни учит гены, как им себя вести. Выбирая между здоровой и нездоровой едой или привычками, мы программируем гены на хорошее или плохое поведение. Ученые нашли уже немало методик, с помощью которых два набора одинаковых ДНК можно заставить функционировать по-разному. На данный момент список этих процессов следующий: букмаркинг, импринтинг, сайленсинг генов, деактивация Х-хромосомы, позиционный эффект, перепрограммирование, трансвекция, материнские эффекты, модификация гистонов и парамутации. Многие из этих эпигенетических регуляторных процессов помечают участки ДНК маркерами, которые определяют, как часто ген разворачивается и раскрывается. После раскрытия ген подвергается воздействию ферментов, которые превращают его в белок. Если же он не раскрывается, то остается спящим, а белок, который он кодирует, не экспрессируется.
Если одна из сестер пьет много молока и переезжает на Гавайи (где ее кожа, реагируя на солнце, вырабатывает витамин D), а другая избегает молочного и остается жить в Миннесоте, то у нее вполне предсказуемо будут более слабые кости, чем у первой сестры, и она, скорее всего, будет страдать из-за проблем с бедрами, спиной и другими костями, вызванных остеопорозом‹‹26››. Эпигенетическое исследование близнецов показало, что различаться будут не только их рентгеновские снимки, но и гены. Ученые становятся все более уверены в том, что неправильный уход и питание организма воздействует не только на нас, но и на наши гены — и, соответственно, на наше потомство. Исследования показывают, что если у одного близнеца есть остеопороз, а у другого — нет, то обнаруживается, что гены, кодирующие рост костей у близнеца с остеопорозом, погрузились в сон — они получили метку, которая на время заставила их перестать работать‹‹27››. К счастью, они проснутся ото сна, если мы изменим свои привычки. К сожалению, возвращаясь к примеру с курящей сестрой, — возможно, она уже потеряла слишком много костной ткани, чтобы когда-либо сравняться с сестрой, которая пила молоко и укрепляла кости витамином D. Хуже того: любые эпигенетические маркеры, которые у нее появились до беременности, могут (как мы знаем, например, из исследования жирных мышей, о котором речь пойдет ниже) передаться ее детям: избегала «строительных материалов» для костей она, а вот страдать будут они. Ее дети унаследуют довольно-таки «сонные» гены, формирующие костную ткань, и будут эпигенетически более склонны к остеопорозу. Можно сказать, что эпигенетический «мозг» малость подзабыл, как строить кости. Маркус Пембри, профессор клинической генетики в лондонском Институте детского здоровья, считает, что «мы все — хранители наших геномов.
То, как люди живут, их образ жизни — это все действует не только на них, но и по принципу домино может передаться их детям и внукам»‹‹28››.
Больше всего меня восхищает интеллектуальность системы. Наши гены словно научились вести записи, напоминать себе, что делать с различными питательными веществами, которые они получают. Вот как это делается. Давайте представим, что ген, отвечающий за строительство костей, помечен двумя эпигенетическими маркерами: один связывается с витамином D, другой — с кальцием. Теперь давайте представим, что когда витамин D и кальций одновременно связываются с соответствующими маркерами, ген разворачивается и может экспрессировать. Если кальция и витамина D нет, то ген остается спящим, и костей строится меньше. Эпигенетические регуляторные метки, по сути, служат записками-напоминалками: Когда у тебя в распоряжении много витамина D и кальция, то сделай побольше белка для строительства костей, который ты кодируешь. И — вуаля, ваши кости постепенно становятся сильнее и длиннее! Это на самом деле очень элегантная конструкция.
Конечно, ДНК не «знает», чем занимается конкретный ген. Она даже не знает, для чего нужны питательные вещества, с которыми она контактирует. С помощью механизмов, которые пока еще не до конца понятны, ДНК была в прошлом запрограммирована эпигенетическими маркерами, которые умеют включать или выключать отдельные участки ДНК, реагируя на определенные питательные вещества. Вся система программирования «заточена» под изменения; впрочем, эти маркеры могут отсоединиться или быть удалены, и генетический мозг забудет, по крайней мере, на время, информацию, которую в него запрограммировали.